*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 13734-31-1 |
Formula : | C9H17NO4 |
M.W : | 203.24 |
SMILES Code : | CC(N(C(OC(C)(C)C)=O)C)C(O)=O |
MDL No. : | MFCD00153297 |
InChI Key : | VLHQXRIIQSTJCQ-UHFFFAOYSA-N |
Pubchem ID : | 4436857 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-ethylmorpholine;; benzotriazol-1-ol; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20℃; for 0.333333h; | Description 44; l,l-Dimethylethyl ((lR)-2-[3-([2-chloro-4-(5-methyl-2- furanyl)phenyl]sulfonyl}amino)-4-(methyloxy)phenyl]amino}-l-methyl-2- oxoethyl)methylcarbamate (D44)A mixture of [Lambda]/-[(l,l-dimethylethyl)oxy]carbonyl}-[Lambda]/-methyl-D-alanine (50 mg, 0.25 mmol), 4-ethylmorpholine (57 mg, 0.5 mmol), 1-hydroxybenzotriazole hydrate (36 mg, 0.3 mmol), [Lambda]/-[3-(dimethylamino)propyl]-[Lambda]/'-ethylcarbodiimide hydrochloride ( 57 mg, 0.3 mmol), and [Lambda]/-[5-amino-2-(methyloxy)phenyl]-2-chloro-4-(5-methyl-2- furanyl)benzenesulfonamide (D43) (300 mg, 0.76 mmol) in [Lambda]/,[Lambda]/-dimethylformamide (4 mL) was stirred at room temperature overnight. The mixture was diluted with saturated sodium hydrogen carbonate solution and extracted with ethyl acetate. The organic phase was washed with water and brine, dried and evaporated. Purification on a SCX-2 cartridge eluting with methanol yielded the title compound (D44). MS (ES<+>) m/e 578, 580 [M+H]<+>. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.3 grams (100%) | With 4-methyl-morpholine; potassium hydrogen sulphate; benzotriazol-1-ol; 1,2-dichloro-ethane; In ethyl acetate; N,N-dimethyl-formamide; | Preparation of 2S-[[2R-[N-(tert-butoxycarbonyl)-N-(methyl)amino]propionyl]amino]-N-[2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-(phenylmethyl)propyl]-3,3-dimethylbutanamide A solution of 0.7 grams (3.3 mmol) of N-t-BOC-N-methyl-D-alanine in 5 mL of anhydrous DMF was cooled to 0 C., charged with 0.7 grams (5.0 mmol) of HOBT and 0.7 grams (3.8 mmol) of EDC and stirred for three hours. The reaction solution was then charged with a solution of 1.7 grams (3.3 mmol) of 2S-amino-N-[2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-(phenylmethyl)propyl]-3,3-dimethylbutanamide and 1.0 grams (9.9 mmol) of 4-methylmorpholine in 5 mL of anhydrous DMF and stirred for 18 hours. The solvents were removed in vacuo and the residue was partitioned between 150 mL of ethyl acetate and 50 mL of 5% potassium hydrogen sulfate solution. The layers were separated, and the organic layer was washed with 50 mL each of saturated sodium bicarbonate solution, water, and brine, then dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to yield 2.3 grams (100%) of the desired product as a white solid, m/e=711 (M+Li). |
2.3 grams (100%) | With 4-methyl-morpholine; potassium hydrogen sulphate; benzotriazol-1-ol; 1,2-dichloro-ethane; In ethyl acetate; N,N-dimethyl-formamide; | Preparation of 2S-[[2R-[N-(tert-butoxycarbonyl)-N-(methyl)amino]propionyl]amino]-N-[2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-(phenylmethyl)propyl]-3,3-dimethylbutanamide A solution of 0.7 grams (3.3 mmol) of N-t-BOC-N-methyl-D-alanine in 5 mL of anhydrous DMF was cooled to 0 C., charged with 0.7 grams (5.0 mmol) of HOBT and 0.7 grams (3.8 mmol) of EDC and stirred for three hours. The reaction solution was then charged with a solution of 1.7 grams (3.3 mmol) of 2S-amino-N-[2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-(phenylmethyl)propyl]-3,3-dimethylbutanamide and 1.0 grams (9.9 mmol) of 4-methylmorpholine in 5 mL of anhydrous DMF and stirred for 18 hours. The solvents were removed in vacuo and the residue was partitioned between 150 mL of ethyl acetate and 50 mL of 5% potassium hydrogen sulfate solution. The layers were separated, and the organic layer was washed with 50 mL each of saturated sodium bicarbonate solution, water, and brine, then dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to yield 2.3 grams (100%) of the desired product as a white solid, m/e=711 (M+Li). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
1.6 grams (70%) | With 4-methyl-morpholine; potassium hydrogen sulphate; benzotriazol-1-ol; 1,2-dichloro-ethane; In hexane; ethyl acetate; N,N-dimethyl-formamide; | Preparation of 2S-[[2R-[N-(tert-butoxycarbonyl)-N-(methyl)amino]propionyl]amino]-N-[2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-(phenylmethyl)propyl]-2S-amino-3S-methylpentanamide A solution of 0.7 grams (3.3 mmol) of N-t-BOC-N-methyl-D-alanine in 5 mL of anhydrous DMF was cooled to 0 C., charged with 0.7 grams (5.0 mmol) of HOBT and 0.7 grams (3.8 mmol) of EDC and stirred for three hours. The reaction solution was then charged with a solution of 1.7 grams (3.3 mmol) of 2S-amino-N-[2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-(phenylmethyl)propyl]-3S-methylpentanamide and 1.0 grams (9.9mmol) of 4-methylmorpholine in 5 mL of anhydrous DMF and stirred for 16 hours. The solvents were removed in vacuo and the residue was partitioned between 150 mL of ethyl acetate and 50 mL of 5% potassium hydrogen sulfate solution. The layers were separated, and the organic layer was washed with 50 mL each of saturated sodium bicarbonate solution, water, and brine, then dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to yield the crude material. Purification was accomplished using flash chromatography on silica gel using 30-50% ethyl acetate/hexane and yielded 1.6 grams (70%) of the desired product as a white solid, m/e=711 (M+Li). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; N-ethyl-N,N-diisopropylamine; 6-chloro-1-hydroxybenzotriazole; In tetrahydrofuran; dichloromethane; | A slightly modified reaction sequence to that described for compounds 801 and 807 can also be employed to assemble the macrocyclic framework. In this approach, the initial alkylation as done via an SN2 displacement rather than a Mitsunobu reraction. This is illustrated for the synthesis of compound 877 from the bromide derived from tether Boc-T75a (M13), cyclopropylglycine methyl ester (M14) and the protected dipeptide (M20) in an overall yield of 35%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-ethyl-N,N-diisopropylamine; HATU; In N,N-dimethyl-formamide; at 20℃; for 1h; | Example 71N1-({3-[(3-[(5-Chloro-2-thienyl)sulfonyl]amino}-4-hydroxy-1H-indazol-1-yl)methyl]phenyl}methyl)-N2-methyl-D-alaninamide formic acid salt; To a solution of O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-hexafluorophosphate (39.7 mg, 0.064 mmol) in anhydrous DMF (1 mL) was added at room temperature <strong>[13734-31-1]N-Boc-N-methyl-D-alanine</strong> (11.91 mg, 0.059 mmol), followed by N,N-diisopropylethylamine (0.0306 mL, 0.176 mmol) and finally a solution of N-(1-[3-(aminomethyl)phenyl]methyl}-4-hydroxy-1H-indazol-3-yl)-5-chloro-2-thiophenesulfonamide formate salt (for a preparation see Intermediate 15) (29 mg, 0.059 mmol) in anhydrous DMF (1 mL). The reaction mixture was stirred at room temperature for 1 hour and then was partitioned between saturated aqueous sodium hydrogen carbonate solution and ethyl acetate. The organic layer was separated, washed with brine-water (1:1), passed through a hydrophobic frit, and evaporated in-vacuo to yield a colourless oil. LCMS (System B) RT=3.01 min, ES+ve m/z 634/636 (M+H)+ for desired BOC protected product. This product was suspended in a solution of hydrogen chloride in 1,4-dioxane (4M, 0.5 mL) and methanol was added until the reaction was in solution. The mixture was stirred at room temperature for 18 hours and then evaporated in-vacuo to yield a colourless oil. The residual oil was dissolved in MeOH-DMSO (0.5 mL) and purified by MDAP) on OA MDAP on Sunfire C18 column, eluting with solvents A/B (A: 0.1% v/v solution of formic acid in water, B: 0.1% v/v solution of formic acid in acetonitrile) (25 min run). The appropriate fractions were combined and evaporated in-vacuo to yield the title compound as a colourless oil (15 mg, 44%). LCMS (System B) RT=1.63 min, ES+ve m/z 534/536 (M+H)+ |