Home Cart Sign in  
Chemical Structure| 21917-76-0 Chemical Structure| 21917-76-0

Structure of 21917-76-0

Chemical Structure| 21917-76-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 21917-76-0 ]

CAS No. :21917-76-0
Formula : C5H4N2S
M.W : 124.16
SMILES Code : N#CC1=CSC(C)=N1
MDL No. :MFCD00068103
InChI Key :YYRJTQRYMNMUCR-UHFFFAOYSA-N
Pubchem ID :2799281

Safety of [ 21917-76-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P280-P305+P351+P338-P310

Computational Chemistry of [ 21917-76-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 8
Num. arom. heavy atoms 5
Fraction Csp3 0.2
Num. rotatable bonds 0
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 31.8
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

64.92 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.56
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.41
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.32
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

-0.56
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.48
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.24

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.96
Solubility 1.36 mg/ml ; 0.0109 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.38
Solubility 0.52 mg/ml ; 0.00419 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.72
Solubility 2.35 mg/ml ; 0.0189 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.06 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.31

Application In Synthesis of [ 21917-76-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 21917-76-0 ]
  • Downstream synthetic route of [ 21917-76-0 ]

[ 21917-76-0 ] Synthesis Path-Upstream   1~5

  • 1
  • [ 31825-95-3 ]
  • [ 21917-76-0 ]
YieldReaction ConditionsOperation in experiment
85% at 305℃; for 1 h; General procedure: Following the amide intermediate Preparation Example A. The reaction vessel is closed (when the amide intermediate has a boiling point at normal pressure equal to or lower than the reaction temperature TB described below) or the reaction vessel is kept open (when the amide intermediate has a boiling point higher than the normal pressure When the reaction temperature is TB), the stirring is continued (600 r/min), the reaction temperature is changed to TB, and after the reaction temperature TB is maintained for TD hours, the reaction is almost complete. Then, the reaction vessel was sealed and connected to a vacuum pump so that the degree of vacuum in the reaction vessel reached 20-50 mbar (according to the type of nitrile product) and the distillate was used as the nitrile product. The yield of the nitrile product was calculated and sampled for nuclear magnetic proteomics and elemental analysis to characterize the nitrile product obtained. Specific reaction conditions and characterization results are shown in Tables A-7, A-8, A-9, A-10 and A-11 below. These characterization results show that the nitrile product obtained has an extremely high purity (above 99percent).In these nitrile product preparation examples, 10 g of diphosphorus pentoxide was optionally added to the reaction vessel as a catalyst at the start of the reaction.
55% With triethylamine; trifluoroacetic anhydride In tetrahydrofuran at 20℃; for 3 h; Step 2. Syntheis of compound 3A mixture of compound 2 (340 mg, 2.79 mmol), TFAA (0.99 mL) and Et3N (2.35 mL) in THF (10 mL) was stirred at room temperature for 3 h. Then the mixture was concentrated in vacuo to give the residue. The mixture was partitioned between H20 (20 mL) and EtOAc (30 mL). The aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (20 mL), dried over Na2S04 and concentrated in vacuo to the crude product, which was purified by preparative TLC (petroleum ether: ethyl acetate = 1 : 1) to give compound 3 (160 g, 55percent) as a yellow solid.
References: [1] Patent: CN104557357, 2018, B, . Location in patent: Paragraph 0150; 0151; 0152; 0162.
[2] ACS Medicinal Chemistry Letters, 2014, vol. 5, # 6, p. 628 - 633.
[3] Bioorganic and Medicinal Chemistry Letters, 2002, vol. 12, # 8, p. 1203 - 1208.
[4] Patent: WO2011/106414, 2011, A1, . Location in patent: Page/Page column 83.
[5] Journal of the Chemical Society [Section] C: Organic, 1969, p. 707 - 710.
  • 2
  • [ 36641-13-1 ]
  • [ 62-55-5 ]
  • [ 21917-76-0 ]
References: [1] Patent: US4010173, 1977, A, .
  • 3
  • [ 135298-47-4 ]
  • [ 21917-76-0 ]
References: [1] Patent: WO2007/138343, 2007, A1, . Location in patent: Page/Page column 7; 9.
  • 4
  • [ 6436-59-5 ]
  • [ 21917-76-0 ]
References: [1] Bioorganic and Medicinal Chemistry Letters, 2002, vol. 12, # 8, p. 1203 - 1208.
[2] Patent: WO2011/106414, 2011, A1, .
  • 5
  • [ 35272-15-2 ]
  • [ 21917-76-0 ]
References: [1] Patent: CN104557357, 2018, B, .
 

Historical Records

Technical Information

Categories