Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 25015-92-3 Chemical Structure| 25015-92-3

Structure of 25015-92-3

Chemical Structure| 25015-92-3

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

DE Stock

US Stock

Asia Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 25015-92-3 ]

CAS No. :25015-92-3
Formula : C8H7ClO3
M.W : 186.59
SMILES Code : OC1=CC=C(C(CCl)=O)C(O)=C1
MDL No. :MFCD03964730

Safety of [ 25015-92-3 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H302-H314
Precautionary Statements:P264-P270-P271-P280-P303+P361+P353-P304+P340-P305+P351+P338-P310-P330-P331-P363-P403+P233-P501
Class:8
UN#:3261
Packing Group:

Application In Synthesis of [ 25015-92-3 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 25015-92-3 ]

[ 25015-92-3 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 25015-92-3 ]
  • [ 32024-15-0 ]
  • 7-hydroxy-2-(3-iodo-4,5-dimethoxyphenyl)-4H-chromen-4-one [ No CAS ]
YieldReaction ConditionsOperation in experiment
62.3% General procedure: As outlined in Schemes 1 and 2, under anhydrous andanaerobic conditions, ZnCl2 (0.05 mol) was added to themixture of resorcinol (0.1 mol) and chloroacetonitrile (0.12mol) in diethyl ether (50 mL) cooled to 0C. The mixturewas reacted with anhydrous hydrogen chloride gas for 12hours. Intermediate compound 1, chrysin derivatives 2-5were synthesized according to Scheme 2. The Baker-VenKataraman reaction was employed in the synthesis ofchrysin derivatives [31]. 2, 4-dihydroxybenzoyl chloride (86mmol) was obtained after recrystallization with water. 2-Iodobenzaldehyde, 3-iodobenzaldehyde, 2-fluorine-5-iodobenzaldehyde or 3-iodo-4,5-dimethoxy benzaldehyde(12 mmol) and 10% NaOH (20 mL) were added to a solutionof compound 1 (10 mmol) in alcohol (5 mL). The mixturewas stirred at room temperature for 72 hours. Then the solutionwas acidified with 10% aqueous HCl to pH= 7 andstirred for another 48 hours at room temperature. The crudeproduce was purified by column chromatography (ethylacetate/ petroleum ether = 1:1) to get products, compound2: 7-hydroxy-2-(2-iodophenyl)-4H-chromen-4-one yielded62.7%, compound 3: 7-hydroxy-2-(3-iodophenyl)-4Hchromen-4-one yielded 61.5%, compound 4: 2- (2-fluoro-5-iodo- phenyl)-7-hydroxy-4H-chromen-4-one yielded 60.8%,compound 5:7-hydroxy-2-(3- iodo-4,5-di- methoxyphenyl)-4H-chromen-4-one yielded 62.3%. All compounds were yellow products.
62.3% General procedure: Synthesis of iodo-chrysin derivatives was accomplishedfollowing the general methods shown in Schemes 1 and 2.As outlined in Schemes 1 and 2, under anhydrous andanaerobic conditions, ZnCl2 (0.05 mol) was added to themixture of resorcinol (0.1 mol) and chloroacetonitrile (0.12mol) in diethyl ether (50 mL) cooled to 0C. The mixturewas reacted with anhydrous hydrogen chloride gas for 12hours. Intermediate compound 1, chrysin derivatives 2-5were synthesized according to Scheme 2. The Baker-VenKataraman reaction was employed in the synthesis ofchrysin derivatives [31]. 2, 4-dihydroxybenzoyl chloride (86mmol) was obtained after recrystallization with water. 2-Iodobenzaldehyde, 3-iodobenzaldehyde, 2-fluorine-5-iodobenzaldehyde or 3-iodo-4,5-dimethoxy benzaldehyde(12 mmol) and 10% NaOH (20 mL) were added to a solutionof compound 1 (10 mmol) in alcohol (5 mL). The mixturewas stirred at room temperature for 72 hours. Then the solutionwas acidified with 10% aqueous HCl to pH= 7 andstirred for another 48 hours at room temperature. The crudeproduce was purified by column chromatography (ethylacetate/ petroleum ether = 1:1) to get products, compound2: 7-hydroxy-2-(2-iodophenyl)-4H-chromen-4-one yielded62.7%, compound 3: 7-hydroxy-2-(3-iodophenyl)-4Hchromen-4-one yielded 61.5%, compound 4: 2- (2-fluoro-5-iodo- phenyl)-7-hydroxy-4H-chromen-4-one yielded 60.8%,compound 5:7-hydroxy-2-(3- iodo-4,5-di- methoxyphenyl)-4H-chromen-4-one yielded 62.3%. All compounds were yellowproducts.
 

Historical Records

Technical Information

• Acidity of Phenols • Alkyl Halide Occurrence • Baeyer-Villiger Oxidation • Barbier Coupling Reaction • Baylis-Hillman Reaction • Bucherer-Bergs Reaction • Chan-Lam Coupling Reaction • Clemmensen Reduction • Corey-Bakshi-Shibata (CBS) Reduction • Corey-Chaykovsky Reaction • Electrophilic Substitution of the Phenol Aromatic Ring • Etherification Reaction of Phenolic Hydroxyl Group • Fischer Indole Synthesis • General Reactivity • Grignard Reaction • Halogenation of Phenols • Henry Nitroaldol Reaction • Hiyama Cross-Coupling Reaction • Horner-Wadsworth-Emmons Reaction • Hydride Reductions • Kinetics of Alkyl Halides • Kumada Cross-Coupling Reaction • Lawesson's Reagent • Leuckart-Wallach Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Oxidation of Phenols • Passerini Reaction • Paternò-Büchi Reaction • Pechmann Coumarin Synthesis • Petasis Reaction • Peterson Olefination • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Amines • Prins Reaction • Reactions of Aldehydes and Ketones • Reactions of Alkyl Halides with Reducing Metals • Reactions of Amines • Reactions of Benzene and Substituted Benzenes • Reformatsky Reaction • Reimer-Tiemann Reaction • Robinson Annulation • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Specialized Acylation Reagents-Ketenes • Stille Coupling • Stobbe Condensation • Substitution and Elimination Reactions of Alkyl Halides • Suzuki Coupling • Tebbe Olefination • Ugi Reaction • Wittig Reaction • Wolff-Kishner Reduction

Categories