Home Cart Sign in  
Chemical Structure| 488-93-7 Chemical Structure| 488-93-7
Chemical Structure| 488-93-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

3-Furoic acid is an organic acid regularly occurring in urine of healthy individuals.

Synonyms: 3-Furoic Acid

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Tian, Gui-Long ; Hsieh, Chia-Ju ; Taylor, Michelle ; Lee, Ji Youn ; Riad, Aladdin A. ; Luedtke, Robert R. , et al.

Abstract: The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the β-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.

Keywords: Dopamine 2 receptor ; Dopamine 3 receptor ; Fallypride ; Bitopic ligands ; PET imaging

Alternative Products

Product Details of 3-Furanoic acid

CAS No. :488-93-7
Formula : C5H4O3
M.W : 112.08
SMILES Code : C1=COC=C1C(O)=O
Synonyms :
3-Furoic Acid
MDL No. :MFCD00005350
InChI Key :IHCCAYCGZOLTEU-UHFFFAOYSA-N
Pubchem ID :10268

Safety of 3-Furanoic acid

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Application In Synthesis of 3-Furanoic acid

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 488-93-7 ]

[ 488-93-7 ] Synthesis Path-Downstream   1~4

  • 1
  • [ 3387-26-6 ]
  • [ 488-93-7 ]
  • 2
  • [ 488-93-7 ]
  • [ 23357-46-2 ]
  • (R)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)furan-3-carboxamide [ No CAS ]
YieldReaction ConditionsOperation in experiment
With benzotriazol-1-ol; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In DMF (N,N-dimethyl-formamide); dichloromethane; at 0 - 20℃; for 24h; To a solution of furan-3-carboxylic acid (100 mg, 0.68 mmol), HOBt (240 mg, 1.78 mmol) and EDCI.HCl (196 mg, 1.03 mmol) in CH2Cl2 (8 mL) and DMF (1.5 mL) at 0 C., was added (R)-1,2,3,4-tetrahydronaphthalen-1-amine (160 μL, 1.06 mmol). The reaction was stirred at rt for 24 h, after which CH2Cl2 was added. The resulting solution was washed with saturated NaHCO3, H2O, brine, dried over MgSO4 and concentrated in vacuo. Recrystallization from EtOH/H2O afforded (R)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-2,5-dihydrofuran-3-carboxamide. 1H NMR (500 MHz, CDCl3): δ 1.89 (m, 3H), 2.12 (m, 1H), 2.84 (m, 2H), 5.35 (m, 1H), 5.96 (br d, 1H, J=7.75 Hz), 6.59 (dd, 1H, J=1.90, 0.86 Hz), 7.13 (m, 1H), 7.19 (m, 2H), 7.32 (m, 1H), 7.43 (t, 1H, J=1.73 Hz), 7.93 (m, 1H). MS(M+H, 242).
  • 3
  • [ 488-93-7 ]
  • [ 59-67-6 ]
  • [ 16874-33-2 ]
  • [ 88-14-2 ]
  • [ 98-97-5 ]
  • [ 21169-71-1 ]
  • [ 4100-13-4 ]
  • [ 3405-77-4 ]
  • [ 6973-60-0 ]
  • [ 5744-59-2 ]
  • [ 5521-55-1 ]
  • [ 636-44-2 ]
  • [ 13602-12-5 ]
  • C25H33N2O3Pol [ No CAS ]
  • C25H33N2O3Pol [ No CAS ]
  • [ 88-13-1 ]
  • [ 149-87-1 ]
  • furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-yl-methyl]-amide [ No CAS ]
  • furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • N-[4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-nicotin amide [ No CAS ]
  • pyrazine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • isoxazole-5-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 1-methyl-1H-pyrrole-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • isoxazole-5-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • thiophene-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • N-[4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-nicotinamide [ No CAS ]
  • pyrazine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • thiophene-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 1-methyl-1H-pyrrole-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • 5-methyl-isoxazole-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 5-methyl-isoxazole-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • 1,5-dimethyl-1H-pyrazole-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 5-oxo-pyrrolidine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • [1,2,3]-thiadazole-4-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • N-[4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-1-hydroxyisonicotin amide N-oxide [ No CAS ]
  • tetrahydro-furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • tetrahydro-furan-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
  • 5-methyl-pyrazine-2-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 2,5-dimethyl-furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-3-ylmethyl]-amide [ No CAS ]
  • 2,5-dimethyl-furan-3-carboxylic acid [4'-(1,1-dimethyl-6-morpholin-4-yl-6-oxo-hexyl)-2'-hydroxy-biphenyl-2-ylmethyl]-amide [ No CAS ]
YieldReaction ConditionsOperation in experiment
Compounds 41-70 were part of a parallel set prepared in library plate format according to General Procedure L, outlined below. ; L. General Procedure for Plate Preparation-Amide Formation XXI: Resin bound deprotected biarylphenol XVII (prepared from intermediate XII, boronates XIVd and XIVe, following general procedures D-F) was distributed into a 96 well plate, 10 mg of resin (0.013 mmol) per well. To the resin 400 mul of dichloromethane was added, followed by 100 mul of DIEA, followed by 0.13 mmol (10 equiv) of heterocyclic carboxylic acid XXa-XXn was added followed by 61 mg (0.13 mmol, 10 equiv) of PyBrop. The plate was shaken at room temperature for 24 hours, then drained and washed with dichloromethane, methanol/dichloromethane, dimethylformamide, methanol/dichloromethane and dichloromethane. The compounds were cleaved with TFA/dichloromethane (600 mul, 1:1) into a 96 deep well plate and submitted for testing without further purification. (Mass spec results obtained are shown in Table 4). Carboxylic Acids Het-COOH XX:
  • 4
  • [ 488-93-7 ]
  • [ 943323-65-7 ]
  • [ 943323-70-4 ]
YieldReaction ConditionsOperation in experiment
91% With N-ethyl-N,N-diisopropylamine; bromo-tris(1-pyrrolidinyl)phosphonium hexafluorophosphate; In dichloromethane; at 25.0℃; for 12.0h; To a solution of 4-bromo-1 H-pyrrolo[2,3-b]pyridin-3-amine (220 mg, 1.04 mmol)[prepared according to Example 89], 3-furoic acid (128 mg, 1.14 mmol) and diisopropylethyl amine (595 mul_, 3.42 mmol) in DCM (10 mL) at 25 C was added PyBrop (580 mg, 1.25 mmol) in one portion. After 12h, the solution was partitioned between H2O/DCM. The aqueous phase was washed several times with DCM and the combined organic fractions were dried over Na2SO4, concentrated and purified using column chromatography (silica, 3% MeOH in DCM) affording the title compound (290 mg, 91%) as an orange oil: LC-MS (ES) m/z = 307 (M+H)+.
 

Historical Records

Technical Information

Categories