Home Cart Sign in  
Chemical Structure| 313490-25-4 Chemical Structure| 313490-25-4

Structure of 313490-25-4

Chemical Structure| 313490-25-4

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 313490-25-4 ]

CAS No. :313490-25-4
Formula : C13H16ClNO4
M.W : 285.72
SMILES Code : CC(C)(C)OC(=O)NC(C(O)=O)C1=CC=CC=C1Cl
MDL No. :MFCD03426362
InChI Key :XPFJZGJBRMTXCE-UHFFFAOYSA-N
Pubchem ID :2756779

Safety of [ 313490-25-4 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 313490-25-4 ] Show Less

Physicochemical Properties

Num. heavy atoms 19
Num. arom. heavy atoms 6
Fraction Csp3 0.38
Num. rotatable bonds 6
Num. H-bond acceptors 4.0
Num. H-bond donors 2.0
Molar Refractivity 71.55
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

75.63 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.43
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

2.85
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.67
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.23
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.9
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.42

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-3.24
Solubility 0.163 mg/ml ; 0.000569 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-4.1
Solubility 0.0229 mg/ml ; 0.00008 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.38
Solubility 0.119 mg/ml ; 0.000415 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.02 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.56

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<0.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.78

Application In Synthesis of [ 313490-25-4 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 313490-25-4 ]

[ 313490-25-4 ] Synthesis Path-Downstream   1~13

  • 1
  • [ 313490-25-4 ]
  • [ 75-08-1 ]
  • [ 1021948-12-8 ]
  • 2
  • [ 313490-25-4 ]
  • [ 1092069-34-5 ]
  • [ 1092069-94-7 ]
YieldReaction ConditionsOperation in experiment
With O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate; N-ethyl-N,N-diisopropylamine; In N,N-dimethyl-formamide; at 20.0℃;Molecular sieve; HBTU (6.37 g, 16.80 mmol) is added to a solution of intermediate 38 (prepared according to A4.d-1), 2-chloro-α-[[(l,l-dimethylethoxy)carbonyl]amino]- benzeneacetic acid (4.00 g; 14. mmol), DIPEA (9.3 ml; 56 mmol) in DMF dried on molecular sieves (100 ml). The reaction mixture was stirred at room temperature overnight. The reaction was evaporated to yield 22.53g. The product was purified by reversed-phase high-performance liquid chromatography (Shandon Hyperprep Cl 8 BDS (Base Deactivated Silica) 8 μm, 250 g, LD. 5 cm). A gradient with 2 phases was applied. Phase A: a 0.25 % NH4HCO3 solution in water; phase B: CH3CN). The desired fractions were collected and worked-up. After partial evaporation at 30-35 0C, extraction with CH2Cl2 (2 x 400 ml) followed by EtOAc extraction (300 ml), drying (MgSO4) and work up of the organic phases, 4512 mg residue was obtained from CH2Cl2 and 45 mg from EtOAc. Yield: 4512 mg (54.3 %) (mixture of R and S- enantiomers). This fraction was separated on SFC (column OJ-H, 30 % CH3OH containing 0.2 % isopropylamine) into its enantiomers. Fraction A yielded 1780 mg (R* enantiomer) and fraction B yielded 1770 mg of intermediate 79 (S* enantiomer).
  • 3
  • [ 67-56-1 ]
  • [ 313490-25-4 ]
  • [ 1253091-76-7 ]
  • 4
  • [ 24424-99-5 ]
  • 2-amino-(2-chlorophenyl)ethanoic acid [ No CAS ]
  • [ 313490-25-4 ]
  • 5
  • [ 313490-25-4 ]
  • [ 109-85-3 ]
  • [ 1366062-98-7 ]
YieldReaction ConditionsOperation in experiment
90% With benzotriazol-1-ol; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 2.0h; Example 32A tert-Butyl {1-(2-chlorophenyl)-2-[(2-methoxyethyl)-amino]-2-oxoethyl}carbamate A mixture of 250 mg (0.88 mmol) of <strong>[313490-25-4][(tert-butoxycarbonyl)amino](2-chlorophenyl)acetic acid</strong>, 177 mg (1.31 mmol) of HOBt, 252 mg (1.31 mmol) of EDC and 72 mg (0.96 mmol) of 2-methoxyethanamine in 6.3 ml of DMF was stirred at RT for 2 h. For purification, 1 ml of 1N hydrochloric acid was added and the entire reaction mixture was separated by preparative HPLC [Method 6]. The appropriate fraction was concentrated on a rotary evaporator and the residue was dried under high vacuum. This gave 269 mg (90% of theory) of the title compound. LC-MS [Method 5]: Rt=0.88 min; MS [ESIpos]: m/z=343 (M+H)+ 1H-NMR (400 MHz, DMSO-d6): δ [ppm]=1.38 (s, 9H), 3.18-3.29 (m, 2H), 3.22 (s, 3H), 3.29-3.37 (m, 2H), 5.45 (d, 1H), 7.28-7.34 (m, 2H), 7.35-7.46 (m, 2H), 7.49 (d, 1H), 8.06 (br. t, 1H).
  • 6
  • [ 313490-25-4 ]
  • [ 6232-11-7 ]
  • C22H25ClN2O5 [ No CAS ]
  • 7
  • [ 313490-25-4 ]
  • C17H17ClN2O3 [ No CAS ]
  • 8
  • [ 313490-25-4 ]
  • C27H33ClN2O3 [ No CAS ]
  • 9
  • [ 313490-25-4 ]
  • C27H31ClN2O3 [ No CAS ]
  • 10
  • [ 313490-25-4 ]
  • C26H29ClN2O3 [ No CAS ]
  • 11
  • [ 313490-25-4 ]
  • C33H42ClN3O4 [ No CAS ]
  • 12
  • [ 313490-25-4 ]
  • C29H34ClN3O4 [ No CAS ]
  • 13
  • [ 313490-25-4 ]
  • [ 1092069-34-5 ]
  • [ 1092069-07-2 ]
 

Historical Records

Technical Information

Categories