Home Cart Sign in  
Chemical Structure| 3217-47-8 Chemical Structure| 3217-47-8

Structure of 3217-47-8

Chemical Structure| 3217-47-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations      Show More

Moghadasnia, Michael P. ; Eckstein, Brian J. ; Balaich, Gary J. ; McGuirk, C. Michael ;

Abstract: A high-fidelity and self-complementary halogen bonding moiety, 2-iodooxazole, was identified using density functional theory-based calculations. Installation of 2-iodooxazole on two geometrically complementary cores using a two-step synthetic approach gave the tectons 1,4-bis(2-iodooxazol-5-yl)benzene (BIOx) and 1,4-bis(2-iodooxazol-5-yl)-2,3,5,6-tetrafluorobenzene (FIOx). Single crystal X-ray diffraction studies have shown that both BIOx and FlOx possess the requisite strength and geometry to assemble into crystalline, multi-dimensional halogen-bonded networks. Control of assembly through chemically intuitive solvent conditions permitted the deliberate assembly of one, two, or three-dimensional halogen-bonded networks. This work demonstrates that through careful design of tectons and crystal-growth conditions, halogen-bonded networks may meet the bar set by hydrogen-bonded analogues.

Purchased from AmBeed:

Zhu, Dongyang ; Verduzco, Rafael ;

Abstract: Covalent organic frameworks (COFs) are organic, crystalline, highly porous materials attractive for applications such as gas storage, gas separations, catalysis, contaminant adsorption, and membrane filtration. Activation of COFs removes adsorbed solvents and impurities, but common methods for COF activation can result in the collapse of porous structure and loss of accessible surface areas. Here, we present a study of the impact of solvent surface tension on the activation process and demonstrate that activation using the ultralow surface tension solvent perfluorohexane (PFH) is simple and effective for a range of COF materials. We synthesized six different imine-based COFs through imine condensation reactions between tris(4-aminophenyl)benzene (TAPB) or 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and multifunctional di- and tri-benzaldehydes with different aromatic substituents. For each COF, we performed a solvent wash followed by vacuum drying using six solvents varying in surface tension from 11.9 to 72.8 mN m-1. Through powder X-ray diffraction (PXRD) measurements combined with nitrogen adsorption and desorption anal., we found that some COF chemistries readily lost their porosity during activation with higher surface tension solvents while others were more robust. However, all COFs could be effectively activated using PFH to produce materials with excellent crystallinity and high surface areas, comparable to those for samples activated using supercritical CO2. This work demonstrates that the solvent surface tension used during activation has a strong impact on the potential pore collapse, and activation using PFH provides a simple and effective activation method to produce COFs with excellent crystallinities and pore structures.

Keywords: COFs ; activation ; perfluorohexane ; pore collapse ; ultralow surface tension solvents

Purchased from AmBeed: ;

Alternative Products

Product Details of [ 3217-47-8 ]

CAS No. :3217-47-8
Formula : C8H2F4O2
M.W : 206.09
SMILES Code : O=CC1=C(F)C(F)=C(C=O)C(F)=C1F
MDL No. :MFCD08704256
InChI Key :WJHRAPYKYJKACM-UHFFFAOYSA-N
Pubchem ID :10420501

Safety of [ 3217-47-8 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 3217-47-8 ] Show Less

Physicochemical Properties

Num. heavy atoms 14
Num. arom. heavy atoms 6
Fraction Csp3 0.0
Num. rotatable bonds 2
Num. H-bond acceptors 6.0
Num. H-bond donors 0.0
Molar Refractivity 37.05
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

34.14 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.66
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.25
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

3.55
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.46
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

3.87
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.36

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.09
Solubility 1.67 mg/ml ; 0.00812 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.57
Solubility 5.61 mg/ml ; 0.0272 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.42
Solubility 0.0787 mg/ml ; 0.000382 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.67 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

2.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.28

Application In Synthesis of [ 3217-47-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 3217-47-8 ]

[ 3217-47-8 ] Synthesis Path-Downstream   1~5

  • 1
  • [ 1897-41-2 ]
  • [ 3217-47-8 ]
  • 2
  • [ 67-56-1 ]
  • [ 1835-49-0 ]
  • [ 327-54-8 ]
  • [ 5216-17-1 ]
  • [ 89992-52-9 ]
  • [ 3217-47-8 ]
YieldReaction ConditionsOperation in experiment
[Example 1]; In a conical flask, 20.6 g of 95% sulfuric acid was slowly added dropwise to 70 g (2.2 mol) of methanol with ice cooling. Then, into a 300-ml glass autoclave, the resulting sulfuric acid/methanol solution and a 5% Rh/C catalyst (available from NE Chemcat Corporation, hydrous product) in an amount of 0.25 g on a dry weight basis were charged. The system was purged with hydrogen to make a hydrogen pressure 0.1 MPa at room temperature. Heating of the autoclave and stirring of the contents in the EPO <DP n="20"/>autoclave were started, and the temperature was increased to 400C and was held constant for 1 hour. After the autoclave was cooled, 10 g (50 mmol) of tetrafluoroterephthalonitrile (available from Tokyo Kasei Kogyo Co., Ltd.) was fed to the autoclave, and the temperature was raised to 700C in a nitrogen atmosphere. At 700C, introduction of hydrogen was started. The reaction pressure was controlled so that the hydrogen absorption rate should become not more than 10 ml/min. After a lapse of 6 hours and 30 minutes, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 119% of the theoretical quantity of hydrogen absorbed. The reaction solution was filtered to separate the catalyst, and methanol was distilled off at atmospheric pressure. Thereafter, 100 g of water was added to the residue, and the mixture was refluxed by heating at an internal temperature of 1000C for 60 minutes. Then, methanol formed by hydrolysis of acetal was distilled off at atmospheric pressure. When the top temperature of the distillation reached 99C, the distillation was finished, and the resulting solution was cooled to room temperature. Then, the solution was extracted 3 times each with 30 g of toluene . EPO <DP n="21"/>From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was below the detection limit, the amount of tetrafluoroterephthalaldehyde was 92.0 mol%, the amount of 2, 3, 5, 6-tetrafluorobenzene was 0.94 mol%, and the amount of 2, 3, 5, 6-tetrafluorobenzonitrile was 0.79 mol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, presence of 3.39 mol% of 2, 3, 5, 6-tetrafluorobenzylamine was confirmed. The results are set forth in Table 1. [Example 2]The same operations as in Example 1 were carried out, except that as a catalyst a 5% Pd/C catalyst (available from NE Chemcat Corporation, hydrous product) was charged in an amount of 0.25 g on a dry weight basis. After a lapse of 3.3 hours, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 117% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1.From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a EPO <DP n="22"/>result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was below the detection limit, and the amount of tetrafluoroterephthalaldehyde was 68.9 mol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, presence of14.8 mo1% of 2, 3, 5, 6-tetrafluorobenzylamine was confirmed.The results are set forth in Table 1. [Example 2]; The same operations as in Example 1 were carried out, except that as a catalyst a 5% Pd/C catalyst (available from NE Chemcat Corporation, hydrous product) was charged in an amount of 0.25 g on a dry weight basis. After a lapse of 3.3 hours, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 117% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1.From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a EPO <DP n="22"/>result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was below the detection limit, and the amount of tetrafluoroterephthalaldehyde was 68.9 mol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, presence of14.8 mo1% of 2, 3, 5, 6-tetrafluorobenzylamine was confirmed.The results are set forth in Table 1.; [Example 3] The same operations as in Example 1 were carried out, except that the temperature of the pretreatment of the catalyst with hydrogen was changed from 400C to 500C.After a lapse of 5.5 hours, absorption of hydrogen ceased.The quantity of hydrogen absorbed was 106% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1.From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was ...
[Example 7]; The same operations as in Example 1 were carried out, except that the catalyst used was changed from the 5% Rh/C catalyst (available from NE Chemcat Corporation, hydrous product) to a 2% Rh/C catalyst (available from NE Chemcat EPO <DP n="26"/>Corporation, hydrous product) . After a lapse of 7.3 hours, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 114% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1.From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was below the detection limit, the amount of tetrafluoroterephthalaldehyde was 88.6 mol%, the amount of 2, 3, 5, 6-tetrafluorobenzene was 1.15 mol%, and the amount of 2, 3, 5, 6-tetrafluorobenzonitrile was 2.63 ralphaol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, presence of 2.36 mol% of 2, 3, 5, 6-tetrafluorobenzylamine was confirmed. The results are set forth in Table 1.
  • 3
  • [ 67-56-1 ]
  • [ 1835-49-0 ]
  • 4-cyano-2,3,5,6-tetrafluorobenzaldehyde [ No CAS ]
  • [ 327-54-8 ]
  • [ 5216-17-1 ]
  • [ 89992-52-9 ]
  • [ 3217-47-8 ]
YieldReaction ConditionsOperation in experiment
[Comparative Example 1]; The same operations as in Example 1 were carried out, except that the amount of the catalyst used was changed from 0.25 g to 0.05 g on a dry weight basis. After a lapse of 7.0 hours, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 83% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1. EPO <DP n="28"/>From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a result of the analysis, the tetrafluoroterephthalonitrile as a raw material remained in an amount of 21.0 mol%, and tetrafluoroterephthalaldehyde was obtained in an amount of only 5.0 mol%. The amount of 2, 3, 5, 6-tetrafluorobenzene was 0.65 mol%, the amount of 2,3,5,6- tetrafluorobenzonitrile was 0.53 mol%, and 1-cyano- 2, 3, 5, 6-tetrafluorobenzaldehyde wherein a nitrile group on only one side had reacted was obtained in an amount of 63.1 mol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, presence of 2.88 mol% of 2,3,5,6- tetrafluorobenzylamine was confirmed. The results are set forth in Table 2.; [Comparative Example 3]; The same operations as in Example 1 were carried out, except that the amount of sulfuric acid used was changed from 20.6 g to 5.15 g (50 mmol). After a lapse of 4.2 hours, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 47% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1.From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was below EPO <DP n="30"/>the detection limit, and tetrafluoroterephthalaldehyde was obtained in an amount of only 14.5 mol%. The amount of 2, 3, 5, 6-tetrafluorobenzene was 0.81 mol%, the amount of 2, 3, 5, 6-tetrafluorobenzonitrile was 0.67 mol%, and 1- cyano-2, 3, 5, 6-tetrafluorobenzaldehyde wherein a nitrile group on only one side had reacted was obtained in an amount of 54.0 mol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, presence of 0.04 mol% of 2,3,5,6- tetrafluorobenzylamine was confirmed. The results are set forth in Table 2.
  • 4
  • [ 67-56-1 ]
  • [ 1835-49-0 ]
  • 4-cyano-2,3,5,6-tetrafluorobenzaldehyde [ No CAS ]
  • [ 327-54-8 ]
  • [ 5216-17-1 ]
  • [ 3217-47-8 ]
YieldReaction ConditionsOperation in experiment
[Comparative Example 4]; The same operations as in Example 1 were carried out, except that the reaction temperature was changed from 7O0C to 12O0C. After a lapse of 8.0 hours, absorption of hydrogen ceased. The quantity of hydrogen absorbed was 103% of the theoretical quantity of hydrogen absorbed. Treatment of the reaction solution was carried out in the same manner as in Example 1. From the toluene extract, a small amount of a sample was withdrawn, and it was subjected to GC analysis. As a result of the analysis, a peak of the tetrafluoroterephthalonitrile as a raw material was below the detection limit, and tetrafluoroterephthalaldehyde was EPO <DP n="31"/>obtained in an amount of only 2.6 mol%. The amount of 2, 3, 5, beta-tetrafluorobenzene was 1.08 mol%, the amount of 2, 3, 5, 6-tetrafluorobenzonitrile was 0.87 mol%, and 1- cyano-2, 3, 5, 6-tetrafluorobenzaldehyde wherein a nitrile group on only one side had reacted was obtained in an amount of 42.2 mol%. On the other hand, the aqueous phase was neutralized and then subjected to GC analysis. As a result of the analysis, the amount of 2,3,5,6- tetrafluorobenzylamine was below the detection limit. The results are set forth in Table 2.
  • 5
  • [ 3217-47-8 ]
  • [ 79538-03-7 ]
  • [ 703-87-7 ]
  • [ 92339-07-6 ]
YieldReaction ConditionsOperation in experiment
With hydrogen;cobalt R400; In toluene; at 120 - 150℃; under 3750.38 - 5625.56 Torr; for 10.5h;Autoclave;Product distribution / selectivity; In a 100 ml autoclave, 6.0 g (29.1 mmol) of 2,3,5,6-tetrafluorobenzene-1,4-dicarbaldehyde, 24.0 g of toluene and 0.6 g of a sponge cobalt catalyst (R-400 manufactured by Nikko Rica Corporation) having been separately subjected to methanol replacement and toluene replacement in advance were placed.First, the autoclave was purged with nitrogen at room temperature and then purged with hydrogen. Subsequently, the temperature of the autoclave was raised to 120 C., then hydrogen was fed to the autoclave with maintaining the pressure at 0.5 MPa, and the reaction was carried out at a temperature of 120 C. for 5 hours. The ratio of absorption of hydrogen at this time was 63%. The temperature of the autoclave was further raised up to 150 C. over a period of 20 minutes, then hydrogen was fed to the autoclave with maintaining the pressure at 0.75 MPa, and the reaction was further, carried out at a temperature of 150 C. for 5 hours and 10 minutes. The ratio of absorption of hydrogen through the whole reaction was 102%. Then, feeding of hydrogen was terminated, and the autoclave was cooled to room temperature. Subsequently, the catalyst was filtered out, and the reaction liquid was taken out.A small amount of a sample was withdrawn and subjected to GC analysis. As a result of the analysis, a peak of the 2, 3, 5, 6-tetrafluorobenzene-1,4-dicarbaldehyde as a raw material was not more than the limit of detection, the formation ratio of 2,3,5,6-tetrafluoro-4-methylbenzyl alcohol was 80.8%, the formation ratio of 1,4-dimethyl-2,3,5,6-tetrafluorobenzene was 8.6%, and the formation ratio of 2,3,5,6-tetrafluorobenzene-1,4-dimethanol was 6.9%.
 

Historical Records

Technical Information

• Alkyl Halide Occurrence • Arndt-Eistert Homologation • Baeyer-Villiger Oxidation • Barbier Coupling Reaction • Baylis-Hillman Reaction • Benzylic Oxidation • Birch Reduction • Blanc Chloromethylation • Bucherer-Bergs Reaction • Clemmensen Reduction • Complex Metal Hydride Reductions • Corey-Bakshi-Shibata (CBS) Reduction • Corey-Chaykovsky Reaction • Corey-Fuchs Reaction • Fischer Indole Synthesis • Friedel-Crafts Reaction • Grignard Reaction • Hantzsch Dihydropyridine Synthesis • Henry Nitroaldol Reaction • Horner-Wadsworth-Emmons Reaction • Hunsdiecker-Borodin Reaction • Hydride Reductions • Hydrogenolysis of Benzyl Ether • Julia-Kocienski Olefination • Knoevenagel Condensation • Lawesson's Reagent • Leuckart-Wallach Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Mukaiyama Aldol Reaction • Nozaki-Hiyama-Kishi Reaction • Passerini Reaction • Paternò-Büchi Reaction • Petasis Reaction • Peterson Olefination • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Alkylbenzene • Preparation of Amines • Preparation of Carboxylic Acids • Prins Reaction • Reactions of Aldehydes and Ketones • Reactions of Amines • Reactions of Benzene and Substituted Benzenes • Reactions of Carboxylic Acids • Reformatsky Reaction • Robinson Annulation • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Specialized Acylation Reagents-Ketenes • Stetter Reaction • Stobbe Condensation • Tebbe Olefination • Ugi Reaction • Vilsmeier-Haack Reaction • Wittig Reaction • Wolff-Kishner Reduction

Categories

Related Functional Groups of
[ 3217-47-8 ]

Aldehydes

Chemical Structure| 653-37-2

A132180 [653-37-2]

2,3,4,5,6-Pentafluorobenzaldehyde

Similarity: 1.00

Chemical Structure| 16583-06-5

A343765 [16583-06-5]

2,3,4,5-Tetrafluorobenzaldehyde

Similarity: 1.00

Chemical Structure| 104451-70-9

A460056 [104451-70-9]

2,3,6-Trifluorobenzaldehyde

Similarity: 1.00

Chemical Structure| 19842-76-3

A128311 [19842-76-3]

2,3,5,6-Tetrafluorobenzaldehyde

Similarity: 1.00

Chemical Structure| 91162-06-0

A750467 [91162-06-0]

2,3,5,6-Tetrafluoro-4-methylbenzaldehyde

Similarity: 1.00