Structure of 3609-53-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Morningstar, John Tanner ;
Abstract: Molecular electronics is a continuously growing field which attempts to solve the problem that their solid-state counterparts encounter with continuing to grow smaller while maintaining the same functionality. Although successful molecular electronics have been created, their level of functionality does not yet match solid states. Furthering the field involves elucidating the mechanism of rectification and continuing to grow the library of compounds available. To accomplish this, we have successfully synthesized twenty new alkylsilanes which exhibit rectification behavior. We were able to draw several conclusions about promising scaffolds through examination of terminal groups with electron withdrawing and donating substituents, nitrogen heterocycles, and sterically hindered substituents. Additionally, our compounds were subjected to doping of the selfassembled monolayer devices which we found to benefit rectification. It was hypothesized that adding electron withdrawing groups, large and soft atoms, and groups with non-bonding electrons would also boost rectification. We obtained compounds with R ratios as high as 8500. This value is the highest our group has achieved to date. Biopolymers are commonly used as drug delivery scaffolds due to their safety and resistance to environmental stimuli. Alginate is one such polymer which has garnered increased attention as of late. To improve the properties of alginate for this purpose, we have developed a method to quantitatively modify the backbone of alginate with small molecules via sodium periodate oxidation and reductive amination of the corresponding oxidized product. Examining the difference in modified alginate with a small unsubstituted aromatic ring as well as an aromatic ketone, ester, and carboxylic acid allowed us to determine which molecules are beneficial to environmental pH sensitivity. xiv We successfully synthesized three new quantitatively modified alginates and examined their pH sensitivity using hydrogel beading studies. Each new compound shows distinct pH response; however, our expectations were met as our original benzoic acid modified product still holds the most desirable degradation profile.
Show More >
Synthesis of Aminopropyltriethoxysilyl-Substituted Imines and Amides
Surya R. Banks ; J. Tanner Morningstar ; Mark E. Welker ;
Abstract: A series of small molecules containing aminopropyltriethoxysilane (APTES) linkers were synthesized so that they could potentially be incorporated into self-assembled monolayers (SAMS) on metal oxide surfaces. Trialkoxysilanes are widely used to modify metal oxide surfaces since they readily react with surface hydroxyl groups to release the alkanol and provide a piano stool trialkoxysilane linkage to the surface [1,2,3,4,5,6,7,8,9,10,11]. Two main structural aspects of the small molecules to be synthesized were considered: (1) ease of synthesis of the small molecule, i.e., where possible, one-pot reactions from inexpensive, commercially available starting materials, and (2) presentation of a variety of aromatic functional groups that would be of interest to others working to use SAMS as components of materials for molecular electronics or sensing applications. Imines that contain both electron-donating and -withdrawing substituents on a benzene ring, as well as a number of imines with nitrogen heterocycles as the aromatic component, were prepared. Amides were prepared containing pyridine, furan, and thiophene rings as part of the aromatic component.
Show More >
Keywords: aminopropyltriethoxysilane ; amide ; imine ; self-assembled monolayer
Show More >
CAS No. : | 3609-53-8 |
Formula : | C10H10O3 |
M.W : | 178.18 |
SMILES Code : | C1=C(C(=O)C)C=CC(=C1)C(OC)=O |
MDL No. : | MFCD00216474 |
InChI Key : | QNTSFZXGLAHYLC-UHFFFAOYSA-N |
Pubchem ID : | 137990 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 13 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.2 |
Num. rotatable bonds | 3 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 47.92 |
TPSA ? Topological Polar Surface Area: Calculated from |
43.37 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.99 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.72 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.68 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.59 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.06 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.81 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.17 |
Solubility | 1.2 mg/ml ; 0.00673 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.25 |
Solubility | 1.01 mg/ml ; 0.00566 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.81 |
Solubility | 0.278 mg/ml ; 0.00156 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.17 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.13 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
98.6% | In tetrahydrofuran; ethanol; | EXAMPLE 1 71.2 g (0.4 mol) of methyl 4-acetylbenzoate, 300 ml of tetrahydrofuran and 100 ml of ethanol were supplied into a four-necked flask equipped with a stirrer and a thermometer. Then 7.6 g (0.2 mol) of sodium boron hydride was added at 15-25 C. over a period of 3 hours. The mixture was maintained at the same temperature for 5 hours and the resulting reaction solution was poured into ice-water and extracted twice with 400 ml of ethyl acetate. The organic layer was concentrated under reduced pressure to obtain 71.0 g of methyl 4-(1-hydroxyethyl)benzoate (IIII-1) in a 98.6% yield. |
96% | With bis(2-hydroxyethyl)ammonium formate; palladium dichloride; In N,N-dimethyl-formamide; at 20℃; for 0.25h;Inert atmosphere; | General procedure: (Table 2, entry 4): To a solution of acetophenone (1) (120 mg, 1.00 mmol) in [BHEA][HCO2] (5.00 mL, 39.7 mmol) was added PdCl2 (17,7 mg, 10.0 mol%) at rt and the mixture was stirred at the same temperature for 6 h under argon atmosphere. The mixture was poured into brine (10 mL) and extracted with EtOAc (10 × 10 mL). The organic layer was washed with brine (100 mL) and dried with MgSO4. After removal of the solvent, the residue was subjected to column chromatography (Merck kieselgel 60, phi = 2.0 cm, l = 11.5 cm; EtOAc-hexane, 1:5) to give 1-phenylethanol (2) as colorless oil; yield: 110 mg (90%). |
96% | With bis(2-hydroxyethyl)ammonium formate; palladium dichloride; In N,N-dimethyl-formamide; at 20℃; for 0.25h;Inert atmosphere; | General procedure: To a solution of 4'-(trifluoromethyl)acetophenone (3e) (188 mg, 1.00 mmol) in DMF (5.00 mL) was added [BHEA][HCO2] (5.00 mL, 39.7 mmol) and PdCl2 (35.5 mg, 20.0 mol %) at rt and the reaction mixture was stirred at the same temperature for 2 h under argon atmosphere. The mixture was poured into brine (10 mL) and extracted with Et2O (10 10 mL). The organic layer was washed with brine (150 mL) and dried with MgSO4. After removal of the solvent, the residue was subjected to column chromatography (Merck Kieselgel 60, Phi=2.0 cm, l=7.5 cm; EtOAc-hexane, 1:5) to give 1-(4-trifluoromethylphenyl)ethanol (4e) as colorless oil; yield: 174 mg (91%). |
94% | With sodium hypophosphite monohydrate; 5%-palladium/activated carbon; tetrabutyl-ammonium chloride; In 2-methyltetrahydrofuran; water; at 60℃; for 2.7h;Schlenk technique; | General procedure: In a Schlenk tube (10mL), a solution of ketone compound (1mmol), tetrabutylammonium chloride (20mg, 72mumol, 7mol%), and Pd/C 5% wt (50% in water) (55mg, 26mumol, 2.6mol%) in 2-MeTHF (1mL) was stirred at room temperature (20C) for 10-20min. To this mixture was added a solution of sodium hypophosphite monohydrate (424mg, 4mmol, 4equiv) in water (2.5mL). The reaction mixture was heated at 60C. After dilution in CH2Cl2 (10mL), water (10mL) was added. The aqueous phase was extracted with CH2Cl2 (2×20mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated. Purification by flash chromatography on silica gel was performed for products 4a, 5a, 10a, 12a, 15a, and 19c. 4.2.1 4-(1-Hydroxyethyl)benzoic acid methyl ester [84851-56-9]11d (1a) (0021) Procedure A; 2.7h; colorless oil (170mg, 94%). 1H NMR (300MHz, CDCl3) delta (ppm)=1.51 (d, 3H, J=6.5Hz, CH3), 1.84 (brs, 1H, OH), 3.91 (s, 3H, OCH3), 4.97 (q, 1H, J=6.5Hz, CH-OH), 7.45 (d, 2H, J=8.3Hz, Harom), 8.02 (d, 2H, J=8.3Hz, Harom). |
85% | With sodium tetrahydroborate; ethanol; at 0 - 20℃; for 12.5h; | methyl 4-( I -hydroxy ethyl) benzoate. To a solution of methyl 4-acetylbenzoate (1.78 g, 10 mmol) in ethanol (100 mL) was added sodium borohydride (0.76 g, 20 mmol) in portions at 0C. The mixture was stirred for 30 minutes and warmed to 20C. Then the mixture was stirred at the same temperature for 12 hours. After that, the mixture was concentrated in vacuo to give methyl 4-(l -hydroxy ethyl) benzoate (1.54 g, 85%). |
85% | With sodium tetrahydroborate; ethanol; at 0 - 20℃; for 12.5h; | To a solution of methyl 4-acetylbenzoate (1.78 g, 10 mmol) in ethanol (100 mL) was added sodium borohydride (0.76 g, 20 mmol) in portions at 0 C. The mixture was stirred for 30 minutes and warmed to 20 C. Then the mixture was stirred at the same temperature for 12 hours. After that, the mixture was concentrated in vacuo to give methyl 4-(1-hydroxyethyl)benzoate (1.54 g, 85%). |
44.9% | With methanol; sodium tetrahydroborate; at 20℃; for 0.25h; | A solution of methyl 4-acetylbenzoate (220 mg, 0.8 mmol) in methanol was added(50 mL) was added sodium borohydride (60 mg, 1.6 mmol) and stirred at room temperature for 15 minutes.An appropriate amount of water was added to the system and extracted with ethyl acetate. The organic phase was dried over anhydrous sodium sulfate and concentrated to give the title compound 20 (100 mg, 44.9%). |
With sodium tetrahydroborate; ethanol; at 0℃; for 1h; | To a stirred solution of methyl 4-acetylbenzoate (358 mg, 2.0 mmol) in EtOH (10 mL) was added NaBH4 (152 mg, 4 mmol) at 0 C. The resulting mixture was stirred at same temperature for 1 h. The excess solvent was removed under vacuum. And the residue was quenched with H20, and extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine (40 mL), dried over sodium sulfate, and concentrated under vacuum. The crude product was obtained as colorless oil (310 mg, 86%) and used directly into next step. 1H NMR (400 MHz, CDC13) delta 8.07 - 7.96 (m, 2H), 7.44 (d, J = 8.2 Hz, 2H), 5.04 - 4.87 (m, 1H), 3.91 (s, 3H), 1.50 (d, J = 6.5 Hz, 3H). 13C NMR (100 MHz, CDC13) delta 167.0, 150.9, 129.9 (2C), 129.2, 125.3 (2C), 70.0, 52.1, 25.3. | |
81%Chromat. | With C28H35ClCoN5(1+)*Cl(1-); potassium tert-butylate; hydrogen; In tetrahydrofuran; at 60℃; under 37503.8 Torr; for 16h;Autoclave; | General procedure: In an argon filled glove box, the cobalt catalyst (LNHC/CoCl2 or Co-2a) and the base wereweighted into a 4mL vial equipped with a magnetic stir bar, followed by addition of the solvent.After shaking of the vial for 30 seconds, the carbonyl substrate was then added. The vial wasplaced into a Parr Instruments autoclave, which was then sealed, removed from the glove boxand purged with hydrogen gas. The autoclave was heated to certain temperature. After reactionfor 16 hours, the autoclave was cooled down to 0 oC before releasing the hydrogen gas. Forquantitative GC analysis, biphenyl (1.0 mmol) as internal standard was added. The organiclayer was then filtrated and diluted for GC analysis. The stereo-selectivity of the hydrogenatedproducts of cyclohexanones were determined by NMR with mesitylene as the internal standard.The desired hydrogenation product was further isolated by flash column chromatography. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium cyanoborohydride; In methanol; chloroform; water; | (a) Methyl 4-(1-bromoethyl)benzoate was obtained as follows: 2 M Methanolic hydrochloric acid was added in portions to a stirred suspension of 3.6 g. of methyl 4-acetylbenzoate (obtained as a solid, m.p. 90-92 C., by conventional esterification of the corresponding acid) and 1.4 g. of sodium cyanoborohydride in methanol containing a single crystal of the indicator methyl orange, so that a red colour persisted. After 4 hours a further 173 mg. of sodium cyanoborohydride was added and the red colour again maintained by addition of 2 M methanolic hydrochloric acid. One hour after the final addition of reagents the solvents were evaporated and the residue was dissolved in water. The solution obtained was extracted with ether. The extracts were then dried (Na2 SO4) and evaporated. The residue was purified by chromatography on silica using 3:97 v/v ether and chloroform as eluant to give 2.9 g. (80%) methyl 4-(1-hydroxyethyl)benzoate as a yellow oil; partial NMR: 1.50 (d,3H,CH3), 3.91 (s,3H, OCH3), 4.94 (q, 1H,CH.OH). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With acetic acid; zinc(II) chloride; at 105℃; for 48h; | (3-Chloro-2-fluoro-phenyl)-hydrazine hydrochloride (Apollo Scientific, Ltd., 221 mg, 1.12 mmol) and 4-acetyl-benzoic acid methyl ester (200 mg, 1.12 mmol) are treated with anhydrous ZnCl2 (382 mg, 2.81 mmol) and acetic acid (10 mL). The reaction is heated to 105 C. for 48 hours. After cooling to room temperature, the reaction is diluted with ethyl acetate and sequentially washed with H2O (5×) followed by saturated aqueous NaCl. The organics are then dried over Na2SO4 and filtered. After concentration, the crude product is purified by preparative RP LC-MS to give 4-(6-chloro-7-fluoro-1H-indol-2-yl)-benzoic acid methyl ester as an off-white solid: ESMS m/z 304.0 (M+H+). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
82% | With sodium methylate; In methanol; diethyl ether; at 20℃; for 24h; | To a suspension of methyl 4-acetylbenzoate (15 g, 84, 1 mmol) in 250 ml diethylether was added <strong>[383-62-0]ethyl difluorochloroacetate</strong> (15 g, 92.6 mmol) and a solution of sodium methoxide 0,5M in MeOH (202 ml, 101 mmol) was added dropwise. The mixture was stirred at rt for 24h and HCI 1 M (130 ml) was then added. The mixture was extracted 3 times with ethyl acetate, dried over MgS04 and evaporated to afford methyl 4-(4-chloro-4,4-difluoro-3-oxobutanoyl)benzoate (21.8 g, 82% yield) as a mixture of diketone and ketoenol which was used in the next step without further purification. MS (ESI): 291 ([M+H]+) |
Tags: 3609-53-8 synthesis path| 3609-53-8 SDS| 3609-53-8 COA| 3609-53-8 purity| 3609-53-8 application| 3609-53-8 NMR| 3609-53-8 COA| 3609-53-8 structure
A117800 [68634-02-6]
Methyl 1-oxo-2,3-dihydro-1H-indene-5-carboxylate
Similarity: 0.93
A117800 [68634-02-6]
Methyl 1-oxo-2,3-dihydro-1H-indene-5-carboxylate
Similarity: 0.93
A117800 [68634-02-6]
Methyl 1-oxo-2,3-dihydro-1H-indene-5-carboxylate
Similarity: 0.93
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL