Home Cart Sign in  
Chemical Structure| 5296-35-5 Chemical Structure| 5296-35-5

Structure of 5296-35-5

Chemical Structure| 5296-35-5

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 5296-35-5 ]

CAS No. :5296-35-5
Formula : C11H14O3
M.W : 194.23
SMILES Code : CCOC1=CC=CC=C1OCC2OC2

Safety of [ 5296-35-5 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H317
Precautionary Statements:P261-P264-P272-P280-P302+P352-P333+P313-P362+P364-P501

Application In Synthesis of [ 5296-35-5 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 5296-35-5 ]

[ 5296-35-5 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 5296-35-5 ]
  • [ 926-39-6 ]
  • [ 46817-91-8 ]
YieldReaction ConditionsOperation in experiment
39.8% With potassium hydroxide; In methanol; water;Product distribution / selectivity; Example 14 Conversion of Epoxide 1 into Viloxazine Base Step II a reaction was improved by reacting of 1 eq. of Epoxide 1 with 2-aminoethyl hydrogen sulfate (8.4 eq.) in a large molar excess of potassium hydroxide solution (30 eq.). See Table 4 below. Conversion of Epoxide 1 into Viloxazine Base <strong>[926-39-6]2-Aminoethyl hydrogen sulfate</strong> (8.4 eq.) was dissolved in 60percent aq. potassium hydroxide solution (10.0 eq.). After a uniform solution was achieved, the Step I intermediate (Epoxide 1, 1 eq.) diluted in methanol (9.8 vol) was added. The reaction mixture was stirred at 55° C. for 4 hours, 60percent aq. potassium hydroxide solution (20.0 eq.) was added and then stirred at 55° C. for a minimum of 16 hours (overnight). The reaction was deemed complete by HPLC when the reaction progress showed 50-55percent of desired product. The reaction was then worked up as described in Step IIa below. This exemplary procedure produces averaged yields of 30-40percent with purity of crude product >80percent by HPLC.Exemplary work-up steps of this method were as follows: Stripped the methanol to a pot temperature of 50° C. under vacuum. Added water (20.8 vol) to the thick slurry. Transferred the slurry to water (72.9 vol.). Added MTBE (9.4 vol) and stir 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (hold organic phase). If un-dissolved salt remains, added recorded amount of water to help dissolve the salt. If resultant solution was hazy, filtered the resultant solution through a filter funnel or centrifuge to allow for better separation. Extracted aqueous phase with MTBE (9.4 vol) and stirred 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held organic phase). Extracted aqueous phase with MTBE (9.4 vol) and stirred 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held organic phase). Extracted aqueous phase with MTBE (9.4 vol) and stirred 15 minutes. Separated phases. Checked aqueous phase for the presence of product. Further extractions may have been required. Combined the organics and washed with 20percent brine solution. Separated layers. Cooled the organics to 5-10° C. Extracted the combined organics with 6 M HCl (40 L). Stirred for 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held aqueous phase). Extracted the combined organics with 6 M HCl (20 L). Stirred for 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held aqueous phase). Extracted the combined organics with 6 M HCl (20 L). Stirred for 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases. Checked organic phase for the presence of product. Further extractions may have been required.Slowly added 50percent sodium hydroxide to the combined aqueous phase at <25° C. to a pH>12. Extracted aqueous phase with MTBE (30 L) and stirred 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held organic phase). Extracted aqueous phase with MTBE (30 L) and stirred 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held organic phase). Extracted aqueous phase with MTBE (30 L) and stirred 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held organic phase). Extracted aqueous phase with MTBE (30 L) and stirred 15 minutes. Stopped stirrer and allowed layers to separate for a minimum of 15 minutes. Separated phases (held organic phase). Combined the organics and washed with 20percent brine solution. Added sodium sulfate to the combined organics and stirred a minimum of one hour. Added activated carbon (0.05 eq.) and stirred a minimum of one hour. Filtered off the sodium sulfate and carbon and washed with MTBE (1.0 vol.). Stripped the resulting filtrate to a thick oil under vacuum at 35° C. Added isopropanol (1.45 vol.) to the oil. Added conc. HCl at a pot temperature <25° to a pH 1. Added ethyl acetate (5.6 vol.) to the mixture. Cooled to -5° C. and stirred for a minimum of 12 hours. Filtered the solid product. Washed the resulting solids with 0° C. isopropanol (2.x.0.78 vol.). Further washed the solids with ethyl acetate (2.x.1.05 vol.). Oven dried the solids to a constant weight at 35° C. under vacuum.
 

Historical Records