Home Cart Sign in  
Chemical Structure| 5538-95-4 Chemical Structure| 5538-95-4

Structure of OES2-0017
CAS No.: 5538-95-4

Chemical Structure| 5538-95-4

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Ambagaspitiya, Tharushi D ; Garza, Danielle John C ; Skelton, Eli ; Kubacki, Emma ; Knight, Alanna ; Bergmeier, Stephen C , et al.

Abstract: Hypothesis: The monoalkyl diamine surfactant, (DPDA), is expected to exhibit a pH-dependent charge switchability. In response to pH changes, the interfacial self-assembly of DPDA becomes an intermediary constituent that can potentially modify the interfacial interactions and structural assembly of both the oil and water phases. Hence, we hypothesize that as we change the pH, DPDA will respond to it by changing its charge and alkyl tail conformation as well as the conformation of adjacent phases at the molecular level, consequently affecting emulsion formation and stability. A neutral pH, resulting in a mono-cationic dialkyl amine, affects the conformation, driving an ordered self-assembly and stable emulsion. Experiments: The pH-sensitivity and interfacial activity of DPDA were evaluated through pH titration and interfacial tension measurements. Subsequently, a molecular-level study of DPDA, as a pH-sensitive switchable surfactant, was performed at the dodecane-water interface using SFG spectroscopy. The interpretation of the vibrational spectra was further reinforced by determining the gauche defects in the interfacial alkyl chain organization and the extent of hydrogen (H) bonding between the interfacial water molecules. Findings: By adjusting the pH of water, the charge of the adsorbed DPDA molecules, their self-assembly, the organization of interfacial molecules, and ultimately the stability of the emulsion were tuned. At pH 7.0, the SFG spectra of DPDA showed that the interfacial alkyl chains were relatively well-ordered, while water molecules also had stronger H-bonding interactions. As a result, the oil-water emulsion showed improved stability. When water was at a high pH, the water molecules had fewer H-bonding interactions and relatively disordered alkyl chains at the interface, providing desirable conditions for demulsification. These observations were compatible with the observation in bulk emulsion preparation, confirming that alkyl chain packing and water H-bonding interactions at the interface contribute to overall emulsion stability.

Purchased from AmBeed:

Alternative Products

Product Details of [ 5538-95-4 ]

CAS No. :5538-95-4
Formula : C15H34N2
M.W : 242.44
SMILES Code : NCCCNCCCCCCCCCCCC
MDL No. :MFCD00014828
InChI Key :XMMDVXFQGOEOKH-UHFFFAOYSA-N
Pubchem ID :79670

Safety of [ 5538-95-4 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H302-H315-H318-H335-H410
Precautionary Statements:P261-P264-P270-P271-P280-P302+P352-P304+P340-P305+P351+P338-P310-P330-P362+P364-P403+P233-P501
Class:9
UN#:3077
Packing Group:

Computational Chemistry of [ 5538-95-4 ] Show Less

Physicochemical Properties

Num. heavy atoms 17
Num. arom. heavy atoms 0
Fraction Csp3 1.0
Num. rotatable bonds 14
Num. H-bond acceptors 2.0
Num. H-bond donors 2.0
Molar Refractivity 79.73
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

38.05 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

4.2
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

4.8
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

3.85
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

3.28
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

4.25
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

4.07

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-3.44
Solubility 0.0874 mg/ml ; 0.00036 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-5.33
Solubility 0.00113 mg/ml ; 0.00000466 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-5.63
Solubility 0.000564 mg/ml ; 0.00000233 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

Yes
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-4.37 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

1.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<3.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.23
 

Historical Records

Technical Information

Categories