Home Cart Sign in  
Chemical Structure| 91342-74-4 Chemical Structure| 91342-74-4

Structure of 91342-74-4

Chemical Structure| 91342-74-4

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 91342-74-4 ]

CAS No. :91342-74-4
Formula : C10H21NO
M.W : 171.28
SMILES Code : CC(C(CN(C)C)CC(C)C)=O
MDL No. :MFCD22683881
InChI Key :QCDJYGZCMGEQNF-UHFFFAOYSA-N
Pubchem ID :53419039

Safety of [ 91342-74-4 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 91342-74-4 ] Show Less

Physicochemical Properties

Num. heavy atoms 12
Num. arom. heavy atoms 0
Fraction Csp3 0.9
Num. rotatable bonds 5
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 53.28
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

20.31 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.5
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.64
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.8
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.77
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.67
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.88

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.61
Solubility 4.25 mg/ml ; 0.0248 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.68
Solubility 3.58 mg/ml ; 0.0209 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.0
Solubility 1.7 mg/ml ; 0.00993 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.18 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.75

Application In Synthesis of [ 91342-74-4 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 91342-74-4 ]

[ 91342-74-4 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 91342-74-4 ]
  • [ 20232-39-7 ]
  • [ 718635-93-9 ]
YieldReaction ConditionsOperation in experiment
85.6% at 35℃; for 48 h; Large scale 6,7-dimethoxy-3,4-dihydroisoquinoline hydrochloride (118.2 kg) was dissolved in water (3 volumes). 34(Dimethylamino)methyl)-5-methylhexan-2-one (99.1 kg) in n-heptane (1.5 volumes) was added and the mixture stirred vigorously for at least 48 hours at about 35° C. until less than 10percent 6,7-dimethoxy-3,4-dihydroisoquinoline was remaining against a standard solution. The solid was filtered, washed with water then heptane, and then dried under vacuum to provide 3-isobutyl-9,10-dimethoxy-3,4,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-2(11bH)-one (141.1 kg, 85.6percent yield).
79% at 30℃; Large scale The 3-((dimethylamino)methyl)-5-methylhexan-2-one-heptane solution was added to a solution of 6,7-dimethoxy-3,4-dihydroisoquinoline hydrochloride (126.1 kg) in water (315:2 L) and the mixture was stirred at about 30° C. The reaction was judged to be complete when less than 10percent 6,7-dimethoxy-3,4-dihydroisoquinoline was remaining against a standard solution. The mixture was cooled to room temperature and the solids were filtered, washed with water (176.5 L) then n-heptane (277.4 L) both stabilized at a temperature between 15-20° C., and then dried under vacuum to provide 3-isobutyl-9,10-dimethoxy-3,4,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-2(11bH)-one (139 kg, 79percent yield).
73.3% With N-benzyl-N,N,N-triethylammonium chloride In water at 50 - 60℃; for 24 h; Intermediate (3-dimethylaminomethyl-5-methyl-2-hexanone, 30 g, 0.175 mol) and 6,7-dimethoxy-3,4-dihydroisoquinoline hydrochloride (39.8 g, 0.175 mol) was added to 300 ml of water and the catalyst (TEBAC, 4.0 g, 0.018 mol,0.1N), heating reaction. The temperature was controlled at 50-60°C and the reaction time was 24 h. Stop stirring, reduce to room temperature, filter solids, 100mlIt was washed twice with water to give 41.5 g of crude tetrabenazine as an off-white solid in a yield of 81.3percent. Recrystallization from anhydrous ethanol gives tetrabenazineThe refined product was 40.6 g, the total yield was 73.3percent, and the HPLC purity was >99.5percent.
References: [1] Patent: US2017/183346, 2017, A1, . Location in patent: Paragraph 0165.
[2] Patent: US2017/183346, 2017, A1, . Location in patent: Paragraph 0162; 0164.
[3] Patent: CN107698582, 2018, A, . Location in patent: Paragraph 0019.
[4] Journal of Labelled Compounds and Radiopharmaceuticals, 2011, vol. 54, # 7, p. 367 - 370.
 

Historical Records

Technical Information

Categories