Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | |||||
{[ item.p_purity ]} | {[ item.pr_size ]} |
{[ getRatePrice(item.pr_usd, 1,1) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate) ]} |
{[ getRatePrice(item.pr_usd, 1,1) ]} | {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate) ]} | {[ item.pr_usastock ]} | Inquiry - | {[ item.pr_chinastock ]} | Inquiry - |
* Storage: {[proInfo.prStorage]}
CAS No. : | 112883-41-7 | MDL No. : | MFCD00155639 |
Formula : | C21H23NO4 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | VCFCFPNRQDANPN-LJQANCHMSA-N |
M.W : | 353.41 | Pubchem ID : | 2756111 |
Synonyms : |
Fmoc-D-Nle-OH
|
Num. heavy atoms : | 26 |
Num. arom. heavy atoms : | 12 |
Fraction Csp3 : | 0.33 |
Num. rotatable bonds : | 9 |
Num. H-bond acceptors : | 4.0 |
Num. H-bond donors : | 2.0 |
Molar Refractivity : | 99.59 |
TPSA : | 75.63 Ų |
GI absorption : | High |
BBB permeant : | Yes |
P-gp substrate : | No |
CYP1A2 inhibitor : | Yes |
CYP2C19 inhibitor : | Yes |
CYP2C9 inhibitor : | Yes |
CYP2D6 inhibitor : | No |
CYP3A4 inhibitor : | Yes |
Log Kp (skin permeation) : | -5.28 cm/s |
Log Po/w (iLOGP) : | 2.85 |
Log Po/w (XLOGP3) : | 4.48 |
Log Po/w (WLOGP) : | 4.17 |
Log Po/w (MLOGP) : | 3.0 |
Log Po/w (SILICOS-IT) : | 3.72 |
Consensus Log Po/w : | 3.64 |
Lipinski : | 0.0 |
Ghose : | None |
Veber : | 0.0 |
Egan : | 0.0 |
Muegge : | 0.0 |
Bioavailability Score : | 0.56 |
Log S (ESOL) : | -4.6 |
Solubility : | 0.00886 mg/ml ; 0.0000251 mol/l |
Class : | Moderately soluble |
Log S (Ali) : | -5.79 |
Solubility : | 0.000575 mg/ml ; 0.00000163 mol/l |
Class : | Moderately soluble |
Log S (SILICOS-IT) : | -6.08 |
Solubility : | 0.000292 mg/ml ; 0.000000826 mol/l |
Class : | Poorly soluble |
PAINS : | 0.0 alert |
Brenk : | 0.0 alert |
Leadlikeness : | 3.0 |
Synthetic accessibility : | 3.86 |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
![]() |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With PS-carbodiimide; benzotriazol-1-ol; N-ethyl-N,N-diisopropylamine; In dichloromethane; at 20℃; for 16.5h; | Example 111 [2- [ (2R)-2-BUTYL-4- (3-TRIFLUOROMETHYL-PYRIDIN-2-YL)-PIPERAZIN-1-YL]-5-] [TRIFLUOROMETHYL-7- (3,] 4, [5-TRIFLUORO-PHENYL)-LH-BENZOIMIDAZOLE,] trifluoroacetic acid salt. (a) Methyl N- [{ [ (9H-FLUOREN-9-YHNETHYL)] oxy] cqarbonyl}-d-norleucy6lglycinate. A mixture [OF FINOC-D-NLE-OH (LOG, 28.] 3 mmol, Novabiochem) and PS- carbodiimide (33 g, 42.45 mmol, 1.28 mmol/g, Argonaut Technologies [INC.)] in dichloromethane (250 mL) was stirred at room temperature for 0.5 h. Then, glycine methyl ester hydrochloride (5.3 g, 42.45 mmol, Aldrich), [HOAT] (3.8g, 28. 3 mmol, Perseptive Biosystems) and diisopropylethylamine (16 mL, 84.9 mmol, Aldrich) were added and the mixture was stirred at room temperature for 16 h. The mixture was filtered and the resin was washed with dichloromethane (2 x 70 mL). The filtrate was concentrated in vacuo and the residue was purified by column chromatography, eluting with EtOAc/hexane (1: 2) to give the title compound as a yellow solid. MS (ESI, positive ion) m/z: 425 (M+1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With piperidine; Carbonyldiimidazole; tin-2-ethylhexanoate dihydrate; potassium tert-butylate; water; N-ethyl-N,N-diisopropylamine; trifluoroacetic acid; diisopropyl-carbodiimide; dibromotriphenylphosphorane; In DMF (N,N-dimethyl-formamide); dichloromethane; N,N-dimethyl acetamide; 1,2-dichloro-ethane;Combinatorial reaction / High throughput screening (HTS); | EXAMPLE 1 [0213] This example shows the synthesis of a combinatorial library of thioquinazolinone derivatives. [0214] Step 1a: Preparation of Wang Bromide Resin [0215] 40 tea bags containing 2 g each of Wang resin (80 g, 120 mmol) was taken in a 5 L PP container. A solution of triphenylphosphine dibromide (152 g, 0.15 M, 3 eq., 360 mmol) in 2000 ml DCM was added and the solution was shaken at room temperature overnight. The resin was sequentially washed with DCM (4×, 1.5 L each) and diethylether (6×, 1.5 L each) and dried under vacuum, to give the bromo wang resin. [0216] Step 1b: Loading of the Nitrophenol on Bromo Wang [0217] 20 g of the Bromo wang resin (1.5 meq/g) was taken in a 2 L wide-mouthed glass container and 1000 mL DMA was addded to it followed by the addition of the nitro phenol (10 eq., 0.3M, 300 mmol). Potasium t-butoxide (33.46 g, 10 eq., 300 mmol) was then added to it and the bottles were heated at 50 C. overnight. The bags were washed alternatively with DMF (500 mL) and DCM (500 mL) 3 cycles followed by 6 cycles of MeOH (500 mL). The tea bags were then dried overnight in air. The following nitrophenols were used: [0218] 2-METHYL-5-NITROPHENOL [0219] 5-HYDROXY-2-NITROBENZOTRIFLUORIDE [0220] 3-METHYL-4-NITROPHENOL [0221] 2-METHOXY-5-NITROPHENOL [0222] M-NITROPHENOL [0223] Step 1c: Reduction of the Nitro Group to Amine [0224] A 2.0 M solution of tin-2-ethylhexanoate dihydrate was prepared in DMF containing 0.5% H2O. The tea bags were added and the solution is heated at 50 C. for 40 hours. After cooling the bags are washed with DMF/10% HOAc (3×), DMF (3×), 5% DIEA/DCM (2×), DCM (2×) and MeOH (2×) and dried in air overnight. [0225] Step 1d: Coupling N-FMOC Protected Amino Acid to Wang Resin. [0226] 20 g of Wang resin (1.5 meq/g) was placed in a porous polypropylene packet (Tea-bag, 60 mm×60 mm, 65mu) and taken in a 1000 mL plastic bottle. DMF (300 mL), DCM (300 mL), FMOC-Cyclohexyl alanine (70.82 g, 6 eq., 0.3M, 180 mmol), DIC (22.71 g, 6 eq., 180 mmol), HOBt (24.32 g, 6 eq., 180 mmol) were added sequentially. After shaking for 12 hours, the packet was washed alternatively with DMF (500 mL) and DCM (500 mL) 3 cycles followed by 6 cycles of MeOH (500 mL). The packet was then dried overnight in air. The tea bags containing the amino acids were then treated with 20% piperidine/DMF for 2 h at room temperature to deblock the FMOC group. The following amino acids were used: [0227] FMOC-GLY-OH [0228] FMOC-ALA-OH [0229] FMOC-L-ISOLEUCINE [0230] FMOC-L-PHENYLALANINE [0231] FMOC-D-NLE-OH [0232] FMOC-CHA-OH [0233] FMOC-L-TRYPTOPHAN [0234] Step 1e: Coupling of the Diamines to Wang Resin [0235] 20 g of Wang resin (1.5 meq/g) was placed in a porous polypropylene packet (Tea-bag, 60 mm×60 mm, 65mu) and taken in a 1000 mL Nalgene bottle. 600 mL of DCM was added followed by the addition of the carbonyl diimidazole (29.9 g, 6 eq., 0.3M, 180 mmol) and the flasks were shaken at room temperature for 3 hours after which they were decanted and washed with DCM (2×, 600 mL). To these Nalgene bottles were added the diamines (6 eq., 0.4M, 180 mmol) in 450 mL of DCM (0.4M) and they were shaken at room temperature overnight. The diamines used were as follows: [0236] 2,2-DIMETHYL-1,3-PROPANEDIAMINE [0237] 1,3-CYCLOHEXANEDIAMINE [0238] (1R,2R)-(-)-1,2-DIAMINOCYCLOHEXANE [0239] TRANS-1,4-DIAMINOCYCLOHEXANE [0240] P-XYLYLENEDIAMINE [0241] 1,4-BIS(3-AMINOPROPYL)PIPERAZINE [0242] ETHYLENEDIAMINE [0243] 1,3-DIAMINOPROPANE [0244] 1,8-DIAMINO-3,6-DIOXAOCTANE [0245] 1,4-DIAMINOBUTANE [0246] 1,5-DIAMINOPENTANE [0247] 1,6-HEXANEDIAMINE [0248] N,N-BIS(3-AMINOPROPYL)METHYLAMINE [0249] 2,2'-THIOBIS(ETHYLAMINE) [0250] 2,5-DIMETHYL-1,4-PHENYLENEDIAMINE [0251] After shaking overnight, the packets was washed alternatively with DMF (500 mL) and DCM (500 mL) 3 cycles followed by 6 cycles of MeOH (500 mL). The packet was then dried in air. [0252] Step 2: Formation of the Isothiocyanate [0253] The o-amino benzoate ester (136 g, 10 eq., 900 mmol) was taken in a 5 L wide-mouthed glass bottle and 2.7 L of dichloroethane was added to it (0.3M). The following esters were used: [0254] METHYL ANTHRANILATE [0255] METHYL 2-AMINO-4-CHLOROBENZOATE [0256] 2-AMINO-4,5-DIMETHOXYBENZOIC ACID [0257] METHYL ESTER [0258] METHYL 3,4,5-TRIMETHOXYANTHRANILATE [0259] DIMETHYL AMINOTEREPHTHALATE [0260] METHYL 2-AMINO-5-BROMOBENZOATE [0261] METHYL 3-AMINOTHIOPHENE-2-CARBOXYLATE [0262] METHYL 3-AMINO-5-PHENYLTHIOPHENE-2-CARBOXYLATE [0263] Thiocarbonyl diimidazole (160 g, 10 eq., 900 mmol) was added to it and the solution was heated at 55 C. overnight to form the isothiocyanate. [0264] Step 3: Formation of the Thioquinazolinone [0265] The next day the tea bags containing the amino acids, diamines and the amino phenols on wang resin (90 mmol) was added to the isothiocyanate solution from reaction 2 and the glass bottles were heated at 55 C. overnight. After cooling the bags was washed alternatively with DMF (2000 mL) and DCM (2000 mL) 3 cycles followed by 6 cycles of MeOH... |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In 1,4-dioxane; NaCO3; water; | EXAMPLE 3 Fmoc-D-Nle-OH D-Nle-OH (1.01 g) was dissolved in 30 ml of 10% NaCO3 and 10 ml of dioxan. While stirring, a solution of Fmoc-Cl (2.0 g) in 10 ml of dioxan was added to the solution. After stirring at room temperature for 2 hours, 400 ml of water was added to the mixture. The reaction mixture was extracted twice with 200 ml of ether to remove by-products. Ice was added to the aqueous phase and the mixture was neutralized with conc. hydrochloric acid. After extracting with ethyl acetate, the extract was washed with water. Crystallization from ether gave 933 mg of Fmoc-D-Nle-OH. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80% | Phenethylamine-AMEBA resin (Sigma Aldrich, 0.25 mmol, 1.0 mmol/g) was subjected to solid phase peptide synthesis on an automatic peptide synthesizer (CEM Liberty Blue Microwave) with standard double Arg for the Arg residues and D-Nle andAzidolysine coupled double time. Amino acids were prepared as 0.2 M solution in DMF. A standard coupling cycle was defined as follows:Amino acid coupling: AA (5 eq.), HATU (5 eq.), DIEA (25 eq.)Washing: DMF (3x7 mL)Fmoc Deprotection: 20% Piperidine/0.1 M HOBt (2x7 mL)Washing: DMF (4x7 mL then 1x5 mL) After the assembly of the peptide, the resin was washed with DMF (2x50 mL) and DCM (2x50 mL) then dried under vacuum to give Intermediate 42a (770 mg, 0.250 mmol). Intermediate 42a (770mg, 0.250 mmol) was divided inhalf and each sample was combined with 6 mE TFA solution (37 mE TFA, 1 mE R20, 1 mE TIPS, 2.569 g (20 eq.) DTT) and shaken at ri. for 3 hours. The solution was removed from the resin and precipitated into 40 mE cold Et20. The solution wasvortexed and let stand over ice for 10 minutes before centrifuging at 4000 rpm for 5 minutes. The solvent was removed and the white solid was washed twice more with cold Et20 (40 mE each time), centrifuged (5 minutes each time) and decanted. The solid was dried under vacuum overnight andpurified via M-triggered RPEC yielding Intermediate 43b as a white powder (80 mg, 0.045 mmol, 80%). ECMS (5Q2 ProductAnalysis-Acidic-Peptide-Polar, Acquity UPEC HER C18 column, 130 A, 1.7 tm, 2.1 mmx50 mm, 50 C.):R=2.32 minutes, MS [M+R+2/2] 888.0. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
49.6 g | (Loading of 2-Chlorotrityl Chloride Resin with Fmoc-D30 Nle-OH, Fmoc Removal and Determination ofthe Loading ofthe Resin)2-Chlorotrityl chloride resin (50.0 g, 85.0 mmol) was suspended in of DCM (400 mL) the suspension was stirred for 10mm and then the solvent was drained, the resin was washed with DCM (3x200 mL). Then a solution of Fmoc-D-Nle-OH(24.0 g, 68.0 mmol) and DIPEA (96.5 ml, 552.5 mmol) in DCM (120.0 mL) was added to the resin, the suspension wasflushed with nitrogen and stirred at it for 5 mm. Anotherportion of DIPEA (22.7 ml, 127.5 mmol) was added and thereaction mixture was stirred at it overnight.The reaction mixture was drained and the resin was washed with DCM (3x250 mL) for 2 mm each time. The resin wasquenched with of a mixture DCM/MeOH/DIPEA (70:15:15)(2x250 mL) for 10 mm each time.g).The Fmoc group was cleaved by treating the resin with piperidine/DMF (1:3) (1x300 mL) for 5 mm. the resin was drained then (1x300 mL) for 15 mm, followed by washingsteps: DMF (6x250 mL, 2 mm each time), isopropanol(2x250 mL, 2 mm each time) and TBME (6x250 mL, 2 mmeach time). The resin was dried under vacuum at 35 C. for 24hours to afford Intermediate 32a (57.8 g, loading=1 .08 mmol/ (Assembly of Linear Peptide)Amino acid coupling: AA (3.0 eq.), DIC (3.0 eq.), HOBt(3.0 eq.), DMF (see table below)Intermediate 32a (18.5 g, 20.0 mmol) was subjected tosolid phase peptide synthesis on an automatic peptide synthesizer (CSBIO536TM). A coupling cycle was defined as follows:Washing: DMF (4x150 mL, 2 mm each time). Fmoc deprotection: Piperidine/DMF (1:3) (150 mE for 5 mm then 150 mE for 15 mm).Washing: DMF (6x150 mE, 2 mm each time). Afier the assembly of the peptide, the resin was washed with DMF (6x1 SOmE, 2 mm each time), isopropanol (6x1 50mE, 2 mm each time) and TBME (6x150 mE, 2 mm each time). The peptide resin was dried overnight under high vacuum at 35 C. to give Intermediate 32b (57.6 g, 20.0 mmol). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Linear Peptide Synthesis on Solid Support: (0330) Fmoc-D-Tyr(tBu) Chlorotrityl resin (Substitution: 1.1 mmol/g) was subjected to manual solid phase peptide synthesis via standard Fmoc chemistry. 0.3 mmol resin was swelled in DMF for 30 minutes; DMF was drained and the resin was treated with 20% piperidine in DMF for 30 min to remove Fmoc group. The resin was washed by DMF 3 times and coupled with a pre-activated Fmoc amino acid solution (Fmoc amino acid/HBTU/HOBt/NMM=3:3:3:6eq) for 2 hours. Ninhydrin test was performed after each coupling to check the coupling efficiency. (0331) The peptide chain was assembled on resin by repetitive removal of the Fmoc protecting group and coupling of protected amino acid till N-term end. After the coupling of the last amino acid, peptide resin was washed with DMF and ethyl ether, and dried under vacuum. The dried peptide resin was treated with TFA cleavage cocktail (TFA/thiolanisole/phenol/EDT/H2O=87.5:5:2.5:2.5:2.5, v/v) for cleavage and removal of the side chain protecting groups. Crude peptides were precipitated from cold ether, collected by filtration and dried under high vacuum. Crude peptides was purified on HPLC (Column: 2?-inch Delta Pak C18, Wavelength: 215 nm) to afford desired product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: General method for preparation of the peptide and introduction of the substituent The preparation of the peptide was carried out with SPPS using Fmoc based chemistry on a Prelude Solid Phase Peptide Synthesizer from Protein Technologies (Tucson, AZ 85714 U.S.A.). The Fmoc-protected amino acids used in the methods were the standard recommended : Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc- Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Cys(Mmt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc- Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Fmoc)-OH Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Val-OH and Fmoc-Lys(Mtt)-OH supplied from e.g. Anaspec, Bachem, Iris Biotech or NovabioChem. A Wang resin preloaded with an amino acid such as Fmoc-Phe-Wang resin or the like was used (for derivatives containing Nphe, 4-CI-Nphe, or alpha-Me-Phe, a 2-Chlorotrityl resin was used). Fmoc- deprotection was achieved with 20% piperidine in NMP. Peptide couplings were performed by using DIC/Oxyma Pure with collidine. Amino acid/Oxyma Pure solutions (0.3 M/0.3 M in DMF at a molar excess of 3-10 fold) was added to the resin followed by the same molar equivalent of DIC (3 M in NMP) followed by collidine (3 M in NMP). Fmoc-Cys(Trt)-OH was used for peptides prepared for methylene bridge introduction according to method A, while Fmoc-Cys(Mmt)-OH was used for peptides prepared for methylene bridge introduction according to method B. |
Tags: 112883-41-7 synthesis path| 112883-41-7 SDS| 112883-41-7 COA| 112883-41-7 purity| 112883-41-7 application| 112883-41-7 NMR| 112883-41-7 COA| 112883-41-7 structure
[ 371770-32-0 ]
(S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-cyclopentylpropanoic acid
Similarity: 0.99
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :