There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of Sodium tetraphenylborate
CAS No.: 143-66-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions
Chun-Lin Deng ; Akachukwu D. Obi ; Bi Youan E. Tra ; Samir Kumar Sarkar ; Diane A. Dickie ; Robert J. Gilliard Jr.
Abstract: Substitution of a C=C bond by an isoelectronic B-N bond is a well-established strategy to alter the electronic structure and stability of acenes. BN-substituted acenes that possess narrow energy gaps have attractive optoelectronic properties. However, they are susceptible to air and/or light. Here we present the design, synthesis and molecular structures of fully π-conjugated cationic BN-doped acenes stabilized by carbodicarbene ligands. They are luminescent in the solution and solid states and show high air and moisture stability. Compared with their neutral BN-substituted counterparts as well as the parent all-carbon acenes, these species display improved quantum yields and small optical gaps. The electronic structures of the azabora-anthracene and azabora-tetracene cations resemble higher-order acenes while possessing high photo-oxidative resistance. Investigations using density functional theory suggest that the stability and photo-physics of these conjugated systems may be ascribed to their cationic nature and the electronic properties of the carbodicarbene.
Show More >
Lukas Sommerauer ; Matthew Konkler ; Gerald Presley ; Thomas Schnabel ; Alexander Petutschnigg ; Barbara Hinterstoisser
Abstract: Bark residues from Douglas fir are an abundant resource that is currently used primarily in low-value energy recovery or is landfilled. Bark extractives are rich in diverse compounds like terpenes, fatty acids, phenols, and sugars with potential uses in a variety of high value applications. The study explores the potential of enzymatic hydrolysis to improve phenolic compounds from Douglas fir bark. It also assesses differences in chemical composition among rhytidome, phloem, and comingled bark fractions from an industrial waste pile. Phloem fractions exhibit higher yields of extractives, rhytidome fractions have elevated lignin levels, while the comingled fraction lies between the two except in ash content which was higher than in the separated fractions. Fungal decay tests with Gloeophyllum trabeum and Coniophora puteana on extract treated wood suggest potential for growth inhibition in extracts, about 58–31 % and 30–7% mass loss (in average) respectively, but due to high mass loss at low concentrations an enzymatic modification approach seems crucial for enhanced inhibition. Growth responses in whole-cell fermentation approach display variability depending on the participating microorganisms. Enzymatic hydrolysis with beta-glucosidase improved the antioxidant properties of bark extracts and holds promise for altering the chemical composition and enhancing bioactivity.
Show More >
Keywords: antioxidant properties ; aqueous extract ; Douglas fir bark ; enzymatic hydrolysis ; organism growth responses
Show More >
Dhyllan A. Skiba ;
Abstract: Rechargeable metal-anode batteries are a promising post Li-ion battery development. However, the high reactivity of metallic anodes with the electrolyte results in the formation of a solid-electrolyte interphase (SEI). Electrolyte design is a key handle in controlling the SEI composition in metal-anode batteries, but our understanding of the electrolyte—specifically the cation’s first coordination sphere is limited. In this thesis, the study of ion solvation and complexation techniques are brought into the context of battery electrolytes. Relevant data from literature is summarized and supplemented with enthalpy of solution (ΔsolH) and enthalpy of transfer (ΔtrH) measurements for the Li-battery relevant salts, LiPF6 and LiTFSI, in a set of polar aprotic solvents. The trends observed are rationalized by consideration of solvent and anion properties, particularly the solvent donicity and anion size. To achieve a finer picture of the Li+ coordination sphere, isothermal titration calorimetry (ITC) and potentiometric titrations (PT) were employed with a set of exemplar electrolytes to probe the thermodynamic evolution of the Li+ coordination complex as weak solvent is displaced by a stronger solvent in the first coordination sphere. Raman spectroscopy is used to confirm that solvent displacement occurs as expected, and the effect of the anion on ITC measurements is investigated. A statistical binding model is developed which is fit to the experimental titration data to extract an average change in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) of solvent displacement. Preferential solvation tendencies are quantified for EC:DMC and EC:PC electrolyte using this methodology, and compared with preferences observed by other workers. This thesis provides the framework for future studies on the thermodynamics of more complex battery electrolyte coordination environments and its connection with the SEI composition.
Show More >
CAS No. : | 143-66-8 |
Formula : | C24H20BNa |
M.W : | 342.22 |
SMILES Code : | C1([B-](C2=CC=CC=C2)(C3=CC=CC=C3)C4=CC=CC=C4)=CC=CC=C1.[Na+] |
MDL No. : | MFCD00011494 |
InChI Key : | HFSRCEJMTLMDLI-UHFFFAOYSA-N |
Pubchem ID : | 2723787 |
GHS Pictogram: |
![]() |
Signal Word: | Danger |
Hazard Statements: | H301-H315-H319-H335 |
Precautionary Statements: | P261-P301+P310-P305+P351+P338 |
Class: | 6.1 |
UN#: | 2811 |
Packing Group: | Ⅲ |
Num. heavy atoms | 26 |
Num. arom. heavy atoms | 24 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 4 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 110.06 |
TPSA ? Topological Polar Surface Area: Calculated from |
0.0 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
7.1 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
3.06 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
6.27 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
4.82 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
4.25 |
Log S (ESOL):? ESOL: Topological method implemented from |
-6.85 |
Solubility | 0.0000479 mg/ml ; 0.00000014 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
Log S (Ali)? Ali: Topological method implemented from |
-6.92 |
Solubility | 0.0000413 mg/ml ; 0.000000121 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-9.97 |
Solubility | 0.0000000366 mg/ml ; 0.0000000001 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
Low |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-3.35 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
1.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.85 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | With palladium diacetate; sodium carbonate; In water; at 20℃; for 0.166667h; | General procedure: To a solution of Pd(OAc)2 (0.003 g, 1.5 mol %) and Na2CO3 (0.11 g, 1 mmol) in H2O (10 mL), NaBPh4 (0.11 g, 0.3 mmol) and freshly prepared aryldiazonium silica sulfate (0.5 mmol)16 were added. The mixture was stirred at room temperature for the time specified in Table 1. The reaction progress was monitored by TLC (hexane/EtOAc, 75:25). After completion of the reaction (absence of azo coupling with 2-naphthol), the mixture was diluted with EtOAc (15 mL) and filtered after vigorous stirring. The residue was extracted with EtOAc (2 × 10 mL) and the combined organic layer was washed with H2O (2 × 10 mL) and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure and the residue was purified by short column chromatography. |
A136880 [79060-88-1]
Sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate
Similarity: 0.60
A217294 [455330-37-7]
Sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate xhydrate
Similarity: 0.58