Structure of 3177-20-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 3177-20-6 |
Formula : | C6H4Cl2N2O2 |
M.W : | 207.01 |
SMILES Code : | O=C(C1=CN=C(Cl)N=C1Cl)OC |
MDL No. : | MFCD09910342 |
InChI Key : | FNNAWVXVOHNOFF-UHFFFAOYSA-N |
Pubchem ID : | 23156323 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 43.33 |
TPSA ? Topological Polar Surface Area: Calculated from |
52.08 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.98 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.57 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.75 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.05 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.67 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.61 |
Solubility | 0.509 mg/ml ; 0.00246 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.7 |
Solubility | 0.413 mg/ml ; 0.002 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.97 |
Solubility | 0.223 mg/ml ; 0.00108 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.16 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.75 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In water; acetone; | EXAMPLE II 2-chloro-4-methylamino-5-methoxycarbonyl-pyrimidine 19.1 g of potassium carbonate in 50 ml water are added dropwise to 13 g of <strong>[3177-20-6]2,4-dichloro-5-methoxycarbonyl-pyrimidine</strong> and 4.7 g of methylamine-hydrochloride in 500 ml acetone at 0 to 5° C. within one hour. Then the mixture is stirred for one hour in an ice bath. The acetone is largely removed in vacuo and the residue is distributed between water and ethyl acetate. Then the aqueous phase is extracted twice more with ethyl acetate. The combined organic phases are dried and evaporated down. The residue is separated by chromatography through a silica gel column with cyclohexane/ethyl acetate (2:1). Yield: 8,8 g (69percent of theory), melting point: 121° C. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In 2-Methylpentane; trichlorophosphate; | i 2,4-Dichloro-5-pyrimidinecarboxylic acid, methyl ester 1,2,3,4-Tetrahydro-2,4-dioxo-5-pyrimidinecarboxylic acid methyl ester (7.0 g) in phosphorus oxychloride (80 ml) was heated under reflux for 16 hours. The phosphorus oxychloride was removed by evaporation under reduced pressure. The reaction mixture was partitioned between water and ethyl acetate. The organic phase was washed with water, dried (MgSO4) and evaporated under reduced pressure. Purification was by chromatography eluding with 20percent ethyl acetate in isohexane. Yield 4.5 g. 1H NMR: delta (DMSO) 9.05(s, 1H), 4.0(s, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
94% | With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 0℃; for 1h; | To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropylethylamine (369 mg, 2.86 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C. Then the solvent was removed. The residue (461mg, 94percent) was dissolved in IPA (20 mL) and followed by the addition of traw-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwisely. The resulting mixture was stirred at 0 °C for 90 min. After which butylamine (208.8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg, 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried (Na2SO4), filtered and concentrated. The residue was purified on ISCO to provide methyl 2-(butylamino)-4-(((trans-4-hydroxycyclohexyl)amino)pyrimidine-5- carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDCl3) delta 9.21 (s, 1H), 8.77 (s, 1H), 6.29 (s, 1H), 4.81-4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.1 1 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J - 9.7 Hz, 2H), 2.35-2.25 (m, 2H), 2.23-2.00 (m, 6H), 1.67 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) delta 167.9, 162.5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41.1 , 33.8, 31.7, 30.3, 20.1, 13.8; MS m/z 323.20 [M+H]+. |
94% | With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 0℃; for 1h; | To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropyeihylamine (369 mg, 2,86 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C. Then the solvent was removed. The residue (461rng, 94percent) was dissolved in IPA (20 ml,) and followed by the addition of trans-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwiseiy. The resulting mixture was stirred at 0 °C for 90 min. After which buiyiamine (208,8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg., 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried (Na2SO4, filtered and concentrated. The residue was purified on ISCO to give methyl 2-(butylamino)-4-((trans-4-hydroxycyclohexyl)amino)pyrimidine-5-carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDCl3) delta 9.21 (s, 1H), S.77 (s, 1H), 6.29 (s, 1H), 4.81 - 4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.1 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J - 9.7 Hz, 2H), 2.35 - 2.25 (m, 2H), 2.23 - 2.00 (m, 6H), 1 ,67 (t, J- 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) delta 167.9, 162,5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41. L 33.8, 31 ,7, 30.3, 20.1, 13,8; MS m/z 323.20 [M+H]+ |
94% | With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 0℃; for 1h; | Methyl 2-(butYlaminoV4-(((tra^^ (0734) (0735) To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropylethylamine (369 mg, 2.86 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C. Then the solvent was removed. The residue (461mg, 94percent) was dissolved in IP A (20 mL) and followed by the addition of tra5'-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwisely. The resulting mixture was stirred at 0 °C for 90 min. After which butylamine (208.8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg, 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried filtered and concentrated. The residue was purified on ISCO to provide methyl 2-(butylamino)-4-(((traj,-4-hydroxycyclohexyl)amino)pyrimidine-5 - carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDC13) delta 9.21 (s, 1H), 8.77 (s, 1H), 6.29 (s, 1H), 4.81-4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.11 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J = 9.7 Hz, 2H), 2.35-2.25 (m, 2H), 2.23-2.00 (m, 6H), 1.67 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDC13) delta 167.9, 162.5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41.1, 33.8, 31.7, 30.3, 20.1, 13.8; MS m/z 323.20 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-ethyl-N,N-diisopropylamine; In acetonitrile; at 120℃; for 2h; | Example 16 9-[2-Chloro-5-(2,3-difluoro-6-methoxybenzyloxy)-4-methoxyphenyl]-2-cyano-7,9-dihydro-8H-purin-8-one A mixture of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (0.41 g), 2-chloro-5-(2,3-difluoro-6-methoxybenzyloxy)-4-methoxyaniline hydrochloride (0.81 g) and N,N-diisopropylethylamine (0.73 mL) in acetonitrile (9 mL) was stirred at 120°C in a reaction vessel equipped with a reflux condenser for 2 hours. The reaction mixture was cooled to room temperature. To the mixture was added water (9 mL), and the mixture was stirred at room temperature for 1 hour. The precipitated crystals were collected by filtration. The collected crystals were washed with water, and dried under reduced pressure to give methyl 2-chloro-4-[2-chloro-5-(2,3-difluoro-6-methoxybenzyloxy)-4-methoxyphenylamino]-pyrimidine-5-carboxylate (0.88 g). To the suspension of the obtained methyl 2-chloro-4-[2-chloro-5-(2,3-difluoro-6-methoxybenzyloxy)-4-methoxyphenylamino]-pyrimidine-5-carboxylate (0.35 g) in dimethyl sulfoxide (6 mL) were added a solution of potassium cyanide (0.13 g) in water (1 mL) and 1,4-diazabicyclo[2,2,2]octane (25 mg), and the mixture was stirred at 30°C for 10 hours. The reaction mixture was diluted with ethyl acetate, and the resulting mixture was washed with water twice and brine successively, and dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The residual solids were suspended in a mixed solvent (n-hexane/ethyl acetate = 1/1), and collected by filtration. The collected solids were washed with the same solvent, and dried under reduced pressure to give methyl 4-[2-chloro-5-(2,3-difluoro-6-methoxy-benzyloxy)-4-methoxyphenylamino]-2-cyanopyrimidine-5-carboxylate (0.22 g). To the obtained methyl 4-[2-chloro-5-(2,3-difluoro-6-methoxybenzyloxy)-4-methoxyphenyl-amino]-2-cyanopyrimidine-5-carboxylate (0.12 g) were added tetrahydrofuran (3 mL), water (1.5 mL) and lithium hydroxide monohydrate (30 mg), and the mixture was stirred at room temperature for 1 hour. The reaction mixture was acidified by adding 1 mol/L hydrochloric acid, and the resulting mixture was extracted with ethyl acetate. The extract was washed with water and brine, and dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residual solids were suspended in a mixed solvent (n-hexane/ethyl acetate = 1/1), and collected by filtration. The collected solids were washed with the same solvent, and dried under reduced pressure to give 4-[2-chloro-5-(2,3-difluoro-6-methoxybenzyloxy)-4-methoxyphenylamino]-2-cyanopyrimidine-5-carboxylic acid (75 mg). To this material were added 1,4-dioxane (2 mL), triethylamine (0.066 mL) and diphenylphosphoryl azide (0.034 mL), and the mixture was stirred at room temperature for 1 hour, and then heated at reflux for 2 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: n-hexane/ethyl acetate = 1/1 - 1/3) to give the title compound (46 mg). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Alternatively, instead of the hydrazone linkage describe above, the compounds may have an amide linkage (see Scheme I below). The synthesis consists of 3 steps. First, to a stirred solution of 4-(2-hydroxyethyl)morpholine (B) (2.8 g, 21.3 mmol) in anhydrous THF (45 mL) at 0 0C, sodium hydride, 60percent dispersion in mineral oil, (0.9 g, 22.5 mmol) is added in three portions under nitrogen purge. Ice-bath was removed and a mixture is stirred at room temperature for 20-30 minutes. The mixture is cooled to 0 0C and added drop-wise (using syringe or dropping funnel) under nitrogen purge to a solution of methyl 2,4-dichloropyrirnidine carboxylate (A) (4.03 g, 19.4 mmol) in anhydrous THF (35 mL) at 0 0C. The resultant solution is stirred for 30 minutes at 0 0C, followed by 30 minutes at room temperature. It is then quenched carefully with ice-water (115mL) and diluted with ethyl acetate (115 mL). Organic layer is separated, water layer extracted once with ethyl acetate, combined ethyl acetate extracts are washed with brine and dried over anhydrous sodium sulfate. Concentration, followed by column chromatography with gradient eluation (hexane : ethyl acetate, 1:1; hexane : ethyl acetate,l:2; ethyl acetate; dichloromethane-acetone-methanol, 3:1:01) affords 3 fractions: first (0.56 g, 9.5percent ) - mostly isomer C, second (1.28 g, 21.8percent)- a mixture of C and D, and byproduct (E), third (0.7 g, 11.9percent) - mostly isomer (D). EPO <DP n="99"/>In the second step, a solution of compound C (0.6 g, 2 mmol), 5-amino-2,3- dimethylindole (F) (0.32 g, 2 mmol) and DIPEA (0.28 g, 2.2 mmol)in dioxane is heated at reflux for two hours. Ethyl acetate and water are added to the concentrated reaction mixture, water layer extracted with ethyl acetate, combined ethyl acetate extracts washed with brine and dried over anhydrous sodium sulfate. Product G (0.64 g, 75percent) is isolated by column chromatography with gradient eluation (ethyl acetate; dichloromethane- acetone-methanol, 3:1:01).In the same manner compound D is converted into product H.Compounds H is then converted into their corresponding amides (I) using appropriate amines following general procedure for amide formation.To a stirred mixture of ester (1 mmol) and amine (1.05 mmol) in toluene (3.2 mL)., 2 M solution of trimethylaluminum in toluene (1.6 eq) is added drop-wise under nitrogen purge. The reaction mixture is stirred until gas evolution halted, and then mixture is micro waved at 120 0C for 5-7 minutes (Emrys Optimizer). To the reaction mixture were added IN NaOH solution and dichloromethane, organic layer separated, washed with water, brine and dried over anhydrous sodium sulfate. Flash column chromatography purification affords about 65-75percent of a desired amide (I). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
67% | With N-ethyl-N,N-diisopropylamine; In tetrahydrofuran; at -78℃; for 1h; | To a stirring solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (4.00 g, 19.32 mmol) in THF (85 mL) was added DIEA (3.37 mL, 19.32 mmol). The resulting mixture was cooled to -78 °C in a dry ice/acetone bath. A solution of (lS,3R)-3- aminocyclohexanol (2.448 g, 21.25 mmol; prepared as described in Tetrahedron:Asymmetry 15:2051-2056(2004)) in 40 mL THF was added at such a rate that the temperature remained at -78 °C. The resulting mixture was stirred at -78 °C for 1 h. The reaction mixture was then concentrated to dryness and diluted with 200 mL ethyl acetate and 75 mL of a 1 : 1 mixture of water and an aqueous saturated sodium bicarbonate solution. The layers were separated and the aqueous layer back-extracted with 100 mL ethyl acetate. The combined ethyl acetate layers were washed with 50 mL of a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered and concentrated to an oil that solidified upon standing. The solid was triturated with diethyl ether (5 mL), filtered, rinsed with diethyl ether (5 mL) and dried in vacuo to afford methyl 2-chloro-4-((lR,3S)-3-hydroxycyclohexylamino)pyrimidine-5-carboxylate (3.7 g, 12.95 mmol, 67percent yield) that was used without further purification. MS (ESI) m/z 286.0 [M+l]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
77.3% | A solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (27 mg, 0.13 mmol) in dichloroethane / i-butanol (1: 1, 2mL) was cooled to 0°C. ZnCl2 solution (1.0 M in ether, 0.29 mL, 0.29 mmol, 2.2 eq.) was added. After stirring for lh, a solution of (R)-methyl 1- isopropyl-7-(methylsulfonyl)-l,2,3,4-tetrahydrobenzo[4,5]imidazo[l,2-a]pyrazine-8- carboxylate (30 mg, 0.09 mmol) in dichloroethane / i-butanol (1: 1, 2 mL) was added slowly at 0°C. The mixture was stirred at rt overnight. Water (10 mL) was added and the mixture was extracted with EtOAc (10 mL X 3). The combined organic layers were dried over anhydrous Na2S04, filtered and concentrated under vacuum. The residue was purified by preparative TLC to afford (R)-methyl 2-(4-chloro-5-(methoxycarbonyl)pyrimidin-2-yl)-l- isopropyl-7-(methylsulfonyl)-l,2,3,4-tetrahydrobenzo[4,5]irnidazo[l,2-a]pyrazine-8- carboxylate (34 mg, 77.3percent yield) as a solid. | |
77.3% | A solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (27 mg, 0.13 mmol) in dichloroethane / i-butanol (1: 1, 2mL) was cooled to 0°C. ZnCl2 solution (1.0 M in ether, 0.29 mL, 0.29 mmol, 2.2 eq.) was added. After stirring for lh, a solution of (R)-methyl 1- isopropyl-7-(methylsulfonyl)-l,2,3,4-tetrahydrobenzo[4,5]irnidazo[l,2-a]pyrazine-8- carboxylate (30 mg, 0.09 mmol) in dichloroethane / i-butanol (1: 1, 2 mL) was added slowly at 0°C. The mixture was stirred at rt overnight. Water (10 mL) was added and the mixture was extracted with EtOAc (10 mL X 3). The combined organic layers were dried over anhydrous Na2S04, filtered and concentrated under vacuum. The residue was purified by preparative TLC to afford (R)-methyl 2-(4-chloro-5-(methoxycarbonyl)pyrimidin-2-yl)-l- isopropyl-7-(methylsulfonyl)-l,2,3,4-tetrahydrobenzo[4,5]irnidazo[l,2-a]pyrazine-8- carboxylate (34 mg, 77.3percent yield) as a solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
26% | With (1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride; potassium phosphate; In tetrahydrofuran; for 4h;Inert atmosphere; Reflux; | To a solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (852 mg, 4 mmol) and cyclopropylboronic acid (344 mg, 4 mmol) in THF (10 mL) was added K3PO4 (3.1g, 12 mmol) followed by Pd(dppf)Cl2 (292 mg, 0.4 mmol) under N2. The mixture was refluxed for 4 h until the material was disappeared. The reaction mixture was cooled to rt. THF was removed under vacuum. Water (20 mL) was added and the mixture was extracted with EtOAc (20 mL X 3). The organic layers were dried over anhydrous Na2S04, filtered and concentrated under vacuum. The residue was purified by preparative TLC to afford methyl 2-chloro-4-cyclopropylpyrimidine-5-carboxylate (220 mg, 26percent yield) as a white solid. |
26% | In tetrahydrofuran; water; | (S)-(4-cyclopropyl-2-(8-(hydroxymethyl)-1-isopropyl-7-(methylsulfonyl)-3,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrazin-2 (1H)-yl)pyrimidin-5-yl)methanol To a solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (852 mg, 4 mmol) and cyclopropylboronic acid (344 mg, 4 mmol) in THF (10 mL) was added K3PO4 (3.1 g, 12 mmol) followed by Pd(dppf)Cl2 (292 mg, 0.4 mmol) under N2. The mixture was refluxed for 4 h until the material was disappeared. The reaction mixture was cooled to rt. THF was removed under vacuum. Water (20 mL) was added and the mixture was extracted with EtOAc (20 mL*3). The organic layers were dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The residue was purified by preparative TLC to afford methyl 2-chloro-4-cyclopropylpyrimidine-5-carboxylate (220 mg, 26percent yield) as a white solid. |
26% | With (1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride; potassium carbonate; In tetrahydrofuran; at 20℃; for 4h;Inert atmosphere; Reflux; | To a solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (852 mg, 4 mmol) and cyclopropylboronic acid (344 mg, 4 mmol) in THF (10 mL) was added K3PO4 (3.1g, 12 mmol) followed by Pd(dppf)Cl2 (292 mg, 0.4 mmol) under N2. The mixture was refluxed for 4 h until the material was disappeared. The reaction mixture was cooled to rt. THF was removed under vacuum. Water (20 mL) was added and the mixture was extracted with EtOAc (20 mL X 3). The organic layers were dried over anhydrous Na2S04, filtered and concentrated under vacuum. The residue was purified by preparative TLC to afford methyl 2-chloro-4-cyclopropylpyrimidine-5-carboxylate (220 mg, 26percent yield) as a white solid. |
26% | In tetrahydrofuran; water; | Example 20 (R)-(4-cyclopropyl-2-(8-(hydroxymethyl)-1-isopropyl-7-(methylsulfonyl)-3,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrazin-2(1H)-yl)pyrimidin-5-yl)methanol and (S)-(4-cyclopropyl-2-(8-(hydroxymethyl)-1-isopropyl-7-(methylsulfonyl)-3,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrazin-2(1H)-yl)pyrimidin-5-yl)methanol To a solution of <strong>[3177-20-6]methyl 2,4-dichloropyrimidine-5-carboxylate</strong> (852 mg, 4 mmol) and cyclopropylboronic acid (344 mg, 4 mmol) in THF (10 mL) was added K3PO4 (3.1 g, 12 mmol) followed by Pd(dppf)Cl2 (292 mg, 0.4 mmol) under N2. The mixture was refluxed for 4 h until the material was disappeared. The reaction mixture was cooled to rt. THF was removed under vacuum. Water (20 mL) was added and the mixture was extracted with EtOAc (20 mL*3). The organic layers were dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The residue was purified by preparative TLC to afford methyl 2-chloro-4-cyclopropylpyrimidine-5-carboxylate (220 mg, 26percent yield) as a white solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-ethyl-N,N-diisopropylamine; In isopropyl alcohol; at 0℃; for 1.5h; | To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropylethylamine (369 mg, 2.86 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C. Then the solvent was removed. The residue (461mg, 94percent) was dissolved in IPA (20 mL) and followed by the addition of traw-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwisely. The resulting mixture was stirred at 0 °C for 90 min. After which butylamine (208.8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg, 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried (Na2SO4), filtered and concentrated. The residue was purified on ISCO to provide methyl 2-(butylamino)-4-(((trans-4-hydroxycyclohexyl)amino)pyrimidine-5- carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDCl3) delta 9.21 (s, 1H), 8.77 (s, 1H), 6.29 (s, 1H), 4.81-4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.1 1 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J - 9.7 Hz, 2H), 2.35-2.25 (m, 2H), 2.23-2.00 (m, 6H), 1.67 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) delta 167.9, 162.5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41.1 , 33.8, 31.7, 30.3, 20.1, 13.8; MS m/z 323.20 [M+H]+. | |
With N-ethyl-N,N-diisopropylamine; In isopropyl alcohol; at 0℃; for 1.5h; | To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropyeihylamine (369 mg, 2,86 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C. Then the solvent was removed. The residue (461rng, 94percent) was dissolved in IPA (20 ml,) and followed by the addition of trans-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwiseiy. The resulting mixture was stirred at 0 °C for 90 min. After which buiyiamine (208,8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg., 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried (Na2SO4, filtered and concentrated. The residue was purified on ISCO to give methyl 2-(butylamino)-4-((trans-4-hydroxycyclohexyl)amino)pyrimidine-5-carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDCl3) delta 9.21 (s, 1H), S.77 (s, 1H), 6.29 (s, 1H), 4.81 - 4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.1 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J - 9.7 Hz, 2H), 2.35 - 2.25 (m, 2H), 2.23 - 2.00 (m, 6H), 1 ,67 (t, J- 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) delta 167.9, 162,5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41. L 33.8, 31 ,7, 30.3, 20.1, 13,8; MS m/z 323.20 [M+H]+ | |
With N-ethyl-N,N-diisopropylamine; In isopropyl alcohol; at 0℃; for 1.5h; | Methyl 2-(butYlaminoV4-(((tra^^ (0734) (0735) To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropylethylamine (369 mg, 2.86 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C. Then the solvent was removed. The residue (461mg, 94percent) was dissolved in IP A (20 mL) and followed by the addition of tra5'-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwisely. The resulting mixture was stirred at 0 °C for 90 min. After which butylamine (208.8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg, 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried filtered and concentrated. The residue was purified on ISCO to provide methyl 2-(butylamino)-4-(((traj,-4-hydroxycyclohexyl)amino)pyrimidine-5 - carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDC13) delta 9.21 (s, 1H), 8.77 (s, 1H), 6.29 (s, 1H), 4.81-4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.11 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J = 9.7 Hz, 2H), 2.35-2.25 (m, 2H), 2.23-2.00 (m, 6H), 1.67 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDC13) delta 167.9, 162.5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41.1, 33.8, 31.7, 30.3, 20.1, 13.8; MS m/z 323.20 [M+H]+. |
Tags: 3177-20-6 synthesis path| 3177-20-6 SDS| 3177-20-6 COA| 3177-20-6 purity| 3177-20-6 application| 3177-20-6 NMR| 3177-20-6 COA| 3177-20-6 structure
A354856 [51940-64-8]
Ethyl 2,4-Dichloro-5-pyrimidinecarboxylate
Similarity: 0.97
A340483 [41103-17-7]
Ethyl 4-chloropyrimidine-5-carboxylate
Similarity: 0.88
A163747 [36745-93-4]
Methyl 2,4-dichloro-6-methylpyrimidine-5-carboxylate
Similarity: 0.87
A169271 [7627-39-6]
2,4-Dichloro-5-(ethoxymethyl)pyrimidine
Similarity: 0.82
A177135 [287714-35-6]
Methyl 2-chloropyrimidine-5-carboxylate
Similarity: 0.82
A354856 [51940-64-8]
Ethyl 2,4-Dichloro-5-pyrimidinecarboxylate
Similarity: 0.97
A340483 [41103-17-7]
Ethyl 4-chloropyrimidine-5-carboxylate
Similarity: 0.88
A163747 [36745-93-4]
Methyl 2,4-dichloro-6-methylpyrimidine-5-carboxylate
Similarity: 0.87
A177135 [287714-35-6]
Methyl 2-chloropyrimidine-5-carboxylate
Similarity: 0.82
A171695 [87600-71-3]
Methyl 4,6-dichloropyrimidine-5-carboxylate
Similarity: 0.82
A354856 [51940-64-8]
Ethyl 2,4-Dichloro-5-pyrimidinecarboxylate
Similarity: 0.97
A340483 [41103-17-7]
Ethyl 4-chloropyrimidine-5-carboxylate
Similarity: 0.88
A163747 [36745-93-4]
Methyl 2,4-dichloro-6-methylpyrimidine-5-carboxylate
Similarity: 0.87
A169271 [7627-39-6]
2,4-Dichloro-5-(ethoxymethyl)pyrimidine
Similarity: 0.82
A177135 [287714-35-6]
Methyl 2-chloropyrimidine-5-carboxylate
Similarity: 0.82
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL