Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 33527-91-2 Chemical Structure| 33527-91-2

Structure of 33527-91-2

Chemical Structure| 33527-91-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations      Show More

Coskun, Halil Ibrahim ; De Luca Bossa, Ferdinando ; Hu, Xiaolei ; Jockusch, Steffen ; Sobieski, Julian ; Yilmaz, Gorkem , et al.

Abstract: In atom transfer radical polymerization (ATRP), dormant alkyl halides are intermittently activated to form growing radicals in the presence of a CuI/L/X-CuII/L (activator/ deactivator) catalytic system. Recently developed very active copper complexes could decrease the catalyst concentration to ppm level. However, unavoidable radical termination results in irreversible oxidation of the activator to the deactivator species, leading to limited monomer conversions. Therefore, successful ATRP at a low catalyst loading requires continuous regeneration of the activators. Such a regenerative ATRP can be performed with various reducing agents under milder reaction conditions and with catalyst concentrations diminished in comparison to conventional ATRP. Photoinduced ATRP (PhotoATRP) is one of the most efficient methods of activator regeneration. It initially employed UV irradiation to reduce the air-stable excited X-CuII/L deactivators to the activators in the presence of sacrificial electron donors. Photocatalysts (PCs) can be excited after absorbing light at longer wavelengths and, due to their favorable redox potentials, can reduce X-CuII/L to CuI/L. Herein, we present the application of three commercially available xanthene dyes as ATRP PCs: (RB), (RD), and (RD-6G). Even at very low Cu catalyst concentrations (50 ppm), they successfully controlled PhotoATRP. Well-defined polymers with preserved livingness were prepared under green LED irradiation, with subppm concentrations ([PC] ≥ 10 ppb) of and or 5 ppm of . Interestingly, these PCs efficiently controlled ATRP at wavelengths longer than their absorption maxima but required higher loadings. Polymerizations proceeded with high initiation efficiencies, yielding polymers with narrow molecular weight distributions and high chain-end fidelity. UV−vis, fluorescence, and laser flash photolysis studies helped to elucidate the mechanism of the processes involved in the dual-catalytic systems, comprising parts per million of Cu complexes and parts per billion of PCs.

Purchased from AmBeed: ; 33527-91-2

Piotr Mocny ; Ting-Chih Lin ; Rohan Parekh ; Yuqi Zhao ; Marek Czarnota ; Mateusz Urbańczyk , et al.

Abstract: (PVDF) shows excellent chemical and thermal resistance and displays high dielectric strength and unique piezoelectricity, which are enabling for applications in membranes, electric insulators, sensors, or power generators. However, its low polarity and lack of functional groups limit wider applications. While inert, PVDF has been modified by grafting polymer chains by atom transfer radical polymerization (ATRP), albeit via an unclear mechanism, given the strong C–F bonds. Herein, we applied and green-light-mediated ATRP to modify PVDF-based materials. The method gave nearly quantitative (meth)acrylate monomer conversions within 2 h without deoxygenation and without the formation of unattached homopolymers, as confirmed by control experiments and DOSY NMR measurements. The gamma distribution model that accounts for broadly dispersed polymers in DOSY experiments was essential and serves as a powerful tool for the analysis of PVDF. The NMR analysis of poly(methyl acrylate) graft chain-ends on PVDF-CTFE (statistical copolymer with chlorotrifluoroethylene) was carried out successfully for the first time and showed up to 23 grafts per PVDF-CTFE chain. The grafting density was tunable depending on the solvent composition and light intensity during the grafting. The initiation proceeded either from the C–Cl sites of PVDF-CTFE or via unsaturations in the PVDF backbones. The dehydrofluorinated PVDF was 20 times more active than saturated PVDF during the grafting. The method was successfully applied to modify PVDF, PVDF-HFP, and Viton A401C. The obtained PVDF-CTFE-g-PnBMA materials were investigated in more detail. They featured slightly lower crystallinity than PVDF-CTFE (12–18 vs 24.3%) and had greatly improved mechanical performance: Young’s moduli of up to 488 MPa, ductility of 316%, and toughness of 46 × 10[6] J/m3.

Keywords: poly(vinylidene fluoride) ; fluoropolymers ; ATRP ; photopolymerization ; grafting ; DOSY NMR ; stretchability ; toughness

Purchased from AmBeed:

Bokouende, Sergely Steephen ; Ward, Cassandra L ; Allen, Matthew J ;

Abstract: Ligands play a crucial role in supporting or stabilizing the divalent oxidation state of lanthanide metals. To expand the range of ligands used to chelate divalent lanthanide ions, we synthesized and studied the structural and photophysical properties of complexes of EuII and SmII with hexamethylhexacyclen, , , and as supporting ligands. Coordination of hexamethylhexacyclen, an analogue of , generates sterically crowded complexes of EuII and SmII that are either seven or eight coordinate and adopt a range of geometries that differ from those of their 18- crown-6 counterparts and from those of lanthanide-containing complexes with the acyclic tetradente tertiary amine ligands included in this report. The emission spectra of EuII(hexamethylhexacyclen) show a moderate sensitivity to counterion identity and are more red-shifted compared to those of complexes of EuII with and the hexamethylated aza derivative of 2.2.2-cryptand. In addition, the morphology of hexamethylhexacyclen in [LnI- (hexamethylhexacyclen)]I was found to resemble that of thermally stable alkalides of the form [M(hexamethylhexacyclen)]Na (M = K+ or Cs+), suggesting that hexamethylhexacyclen could be an interesting ligand for strongly reducing lanthanide ions.

Purchased from AmBeed: 33527-91-2 ;

Coskun, Halil Ibrahim ; Votruba-Drzal, Thomas ; Wu, Hanshu ; Jockusch, Steffen ; Yilmaz, Gorkem ; Matyjaszewski, Krzysztof

Abstract: The photoATRP of methyl acrylate (MA) is investigated using riboflavin (RF)and CuBr2 /Me6 TREN as a dual catalyst system under green LED irradiation(λ ≈ 525 nm). Both RF and CuBr2 /Me6 TREN enhanced oxygen tolerance,enabling effective ATRP in the presence of residual oxygen. High molar masspolymers (up to Mn ≈ 129 000 g·mol−1) with low dispersity (Ð ≤ 1.16) areprepared, and chain-end fidelity is confirmed through successful chainextension. The molecular masses of the obtained polymer increased linearlywith conversion and showed high initiation efficiency. Mechanistic studies bylaser flash photolysis reveal that the predominant activator generationmechanism is reductive quenching of RF by Me6 TREN (83%, under[CuBr2]/[Me6 TREN] = 1/3 condition), supported by polymerization kineticsand thermodynamic calculations.

Keywords: ATRP ; photocatalyst ; photopolymerization ; riboflavin

Purchased from AmBeed:

Alternative Products

Product Details of [ 33527-91-2 ]

CAS No. :33527-91-2
Formula : C12H30N4
M.W : 230.39
SMILES Code : CN(C)CCN(CCN(C)C)CCN(C)C
MDL No. :MFCD00015607
InChI Key :VMGSQCIDWAUGLQ-UHFFFAOYSA-N
Pubchem ID :263094

Safety of [ 33527-91-2 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H314
Precautionary Statements:P280-P305+P351+P338-P310
Class:8
UN#:2735
Packing Group:

Computational Chemistry of [ 33527-91-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 16
Num. arom. heavy atoms 0
Fraction Csp3 1.0
Num. rotatable bonds 9
Num. H-bond acceptors 4.0
Num. H-bond donors 0.0
Molar Refractivity 71.38
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

12.96 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

3.59
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.38
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

-0.03
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.75
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.21
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.9

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-0.91
Solubility 28.1 mg/ml ; 0.122 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-0.22
Solubility 140.0 mg/ml ; 0.606 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.99
Solubility 2.38 mg/ml ; 0.0103 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

Low
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-7.44 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.06
 

Historical Records

Technical Information

Categories