There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 33527-91-2
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
ATRP with ppb Concentrations of Photocatalysts
Coskun, Halil Ibrahim ; De Luca Bossa, Ferdinando ; Hu, Xiaolei ; Jockusch, Steffen ; Sobieski, Julian ; Yilmaz, Gorkem , et al.
Abstract: In atom transfer radical polymerization (ATRP), dormant alkyl halides are intermittently activated to form growing radicals in the presence of a CuI/L/X-CuII/L (activator/ deactivator) catalytic system. Recently developed very active copper complexes could decrease the catalyst concentration to ppm level. However, unavoidable radical termination results in irreversible oxidation of the activator to the deactivator species, leading to limited monomer conversions. Therefore, successful ATRP at a low catalyst loading requires continuous regeneration of the activators. Such a regenerative ATRP can be performed with various reducing agents under milder reaction conditions and with catalyst concentrations diminished in comparison to conventional ATRP. Photoinduced ATRP (PhotoATRP) is one of the most efficient methods of activator regeneration. It initially employed UV irradiation to reduce the air-stable excited X-CuII/L deactivators to the activators in the presence of sacrificial electron donors. Photocatalysts (PCs) can be excited after absorbing light at longer wavelengths and, due to their favorable redox potentials, can reduce X-CuII/L to CuI/L. Herein, we present the application of three commercially available xanthene dyes as ATRP PCs: rose bengal (RB), rhodamine B (RD), and rhodamine 6G (RD-6G). Even at very low Cu catalyst concentrations (50 ppm), they successfully controlled PhotoATRP. Well-defined polymers with preserved livingness were prepared under green LED irradiation, with subppm concentrations ([PC] ≥ 10 ppb) of RB and RD-6G or 5 ppm of RD. Interestingly, these PCs efficiently controlled ATRP at wavelengths longer than their absorption maxima but required higher loadings. Polymerizations proceeded with high initiation efficiencies, yielding polymers with narrow molecular weight distributions and high chain-end fidelity. UV−vis, fluorescence, and laser flash photolysis studies helped to elucidate the mechanism of the processes involved in the dual-catalytic systems, comprising parts per million of Cu complexes and parts per billion of PCs.
Show More >
Piotr Mocny ; Ting-Chih Lin ; Rohan Parekh ; Yuqi Zhao ; Marek Czarnota ; Mateusz Urbańczyk , et al.
Abstract: Poly(vinylidene fluoride) (PVDF) shows excellent chemical and thermal resistance and displays high dielectric strength and unique piezoelectricity, which are enabling for applications in membranes, electric insulators, sensors, or power generators. However, its low polarity and lack of functional groups limit wider applications. While inert, PVDF has been modified by grafting polymer chains by atom transfer radical polymerization (ATRP), albeit via an unclear mechanism, given the strong C–F bonds. Herein, we applied eosin Y and green-light-mediated ATRP to modify PVDF-based materials. The method gave nearly quantitative (meth)acrylate monomer conversions within 2 h without deoxygenation and without the formation of unattached homopolymers, as confirmed by control experiments and DOSY NMR measurements. The gamma distribution model that accounts for broadly dispersed polymers in DOSY experiments was essential and serves as a powerful tool for the analysis of PVDF. The NMR analysis of poly(methyl acrylate) graft chain-ends on PVDF-CTFE (statistical copolymer with chlorotrifluoroethylene) was carried out successfully for the first time and showed up to 23 grafts per PVDF-CTFE chain. The grafting density was tunable depending on the solvent composition and light intensity during the grafting. The initiation proceeded either from the C–Cl sites of PVDF-CTFE or via unsaturations in the PVDF backbones. The dehydrofluorinated PVDF was 20 times more active than saturated PVDF during the grafting. The method was successfully applied to modify PVDF, PVDF-HFP, and Viton A401C. The obtained PVDF-CTFE-g-PnBMA materials were investigated in more detail. They featured slightly lower crystallinity than PVDF-CTFE (12–18 vs 24.3%) and had greatly improved mechanical performance: Young’s moduli of up to 488 MPa, ductility of 316%, and toughness of 46 × 10[6] J/m3.
Show More >
Keywords: poly(vinylidene fluoride) ; fluoropolymers ; ATRP ; photopolymerization ; grafting ; DOSY NMR ; stretchability ; toughness
Show More >
Bokouende, Sergely Steephen ; Ward, Cassandra L ; Allen, Matthew J ;
Abstract: Ligands play a crucial role in supporting or stabilizing the divalent oxidation state of lanthanide metals. To expand the range of ligands used to chelate divalent lanthanide ions, we synthesized and studied the structural and photophysical properties of complexes of EuII and SmII with hexamethylhexacyclen, 1,1,4,7,10,10-hexamethyltriethylenetetramine, tris[2-(dimethylamino)- ethyl]amine, and tris[2-(isopropylamino)ethyl]amine as supporting ligands. Coordination of hexamethylhexacyclen, an analogue of 18-crown-6, generates sterically crowded complexes of EuII and SmII that are either seven or eight coordinate and adopt a range of geometries that differ from those of their 18- crown-6 counterparts and from those of lanthanide-containing complexes with the acyclic tetradente tertiary amine ligands included in this report. The emission spectra of EuII(hexamethylhexacyclen) show a moderate sensitivity to counterion identity and are more red-shifted compared to those of complexes of EuII with 18-crown-6 and the hexamethylated aza derivative of 2.2.2-cryptand. In addition, the morphology of hexamethylhexacyclen in [LnI- (hexamethylhexacyclen)]I was found to resemble that of thermally stable alkalides of the form [M(hexamethylhexacyclen)]Na− (M = K+ or Cs+), suggesting that hexamethylhexacyclen could be an interesting ligand for strongly reducing lanthanide ions.
Show More >
Riboflavin-Catalyzed Photoinduced Atom Transfer Radical Polymerization
Coskun, Halil Ibrahim ; Votruba-Drzal, Thomas ; Wu, Hanshu ; Jockusch, Steffen ; Yilmaz, Gorkem ; Matyjaszewski, Krzysztof
Abstract: The photoATRP of methyl acrylate (MA) is investigated using riboflavin (RF)and CuBr2 /Me6 TREN as a dual catalyst system under green LED irradiation(λ ≈ 525 nm). Both RF and CuBr2 /Me6 TREN enhanced oxygen tolerance,enabling effective ATRP in the presence of residual oxygen. High molar masspolymers (up to Mn ≈ 129 000 g·mol−1) with low dispersity (Ð ≤ 1.16) areprepared, and chain-end fidelity is confirmed through successful chainextension. The molecular masses of the obtained polymer increased linearlywith conversion and showed high initiation efficiency. Mechanistic studies bylaser flash photolysis reveal that the predominant activator generationmechanism is reductive quenching of RF by Me6 TREN (83%, under[CuBr2]/[Me6 TREN] = 1/3 condition), supported by polymerization kineticsand thermodynamic calculations.
Show More >
Keywords: ATRP ; photocatalyst ; photopolymerization ; riboflavin
Show More >
CAS No. : | 33527-91-2 |
Formula : | C12H30N4 |
M.W : | 230.39 |
SMILES Code : | CN(C)CCN(CCN(C)C)CCN(C)C |
MDL No. : | MFCD00015607 |
InChI Key : | VMGSQCIDWAUGLQ-UHFFFAOYSA-N |
Pubchem ID : | 263094 |
GHS Pictogram: |
![]() |
Signal Word: | Danger |
Hazard Statements: | H314 |
Precautionary Statements: | P280-P305+P351+P338-P310 |
Class: | 8 |
UN#: | 2735 |
Packing Group: | Ⅱ |
Num. heavy atoms | 16 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 1.0 |
Num. rotatable bonds | 9 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 71.38 |
TPSA ? Topological Polar Surface Area: Calculated from |
12.96 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
3.59 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.38 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
-0.03 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.75 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-0.21 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.9 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.91 |
Solubility | 28.1 mg/ml ; 0.122 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.22 |
Solubility | 140.0 mg/ml ; 0.606 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.99 |
Solubility | 2.38 mg/ml ; 0.0103 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
Low |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.44 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<2.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.06 |