Structure of 401-81-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 401-81-0 |
Formula : | C7H4F3I |
M.W : | 272.01 |
SMILES Code : | FC(C1=CC(I)=CC=C1)(F)F |
MDL No. : | MFCD00001049 |
InChI Key : | IGISPMBUGPHLBY-UHFFFAOYSA-N |
Pubchem ID : | 67868 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H227-H315-H319-H335 |
Precautionary Statements: | P210-P261-P264-P271-P280-P302+P352-P304+P340-P305+P351+P338-P312-P370+P378-P362+P364-P403+P233-P501 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.14 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 44.16 |
TPSA ? Topological Polar Surface Area: Calculated from |
0.0 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.24 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.6 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
4.46 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
4.25 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.8 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
3.67 |
Log S (ESOL):? ESOL: Topological method implemented from |
-4.13 |
Solubility | 0.0201 mg/ml ; 0.0000738 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.29 |
Solubility | 0.14 mg/ml ; 0.000517 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.23 |
Solubility | 0.0159 mg/ml ; 0.0000585 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
Low |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
Yes |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.4 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
1.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.64 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
98% | With bifunctional palladated rasta resin; In N,N-dimethyl-formamide; at 100℃; for 20h;Green chemistry; | General procedure: Catalyst 2c (prepared according Ref. 26b, 133 mg, 6.2 equiv of Pd) was added to a solution of aryl iodide (0.20 mmol, 1.0 m equiv), alkene (0.40 mmol, 2.0 equiv) in DMF (2 mL). The reaction mixture was heated at 100 C for 20 h. After cooling to rt, compound 2c was filtered off under vacuum using a 0.2 μm membrane. The mixture of solvents was concentrated under vacuum to afford pure 3a-j after drying under vacuum (0.1 mbar). The catalyst 2c was then regenerated by reaction with NBu3 (0.16 mL, 0.66 mmol, 3.3 equiv) in DMF at rt for 3 h. Compound 2c was then filtered under vacuum, washed with Et2O (2 mL), and dried under vacuum. |
95% | With triethylamine; In N,N-dimethyl-formamide; toluene; at 100℃; for 20h; | General procedure: Catalyst 1 (prepared according Ref.15a, 7.1 mg,0.05 mequiv of Pd) was added to a solution of aryl iodide (4 mmol,1.0 equiv), methyl acrylate (0.72 mL, 8 mmol, 2.0 equiv), Et3N (0.67 mL,4.8 mmol, 1.2 equiv) in a mixture of toluene (6.7 mL), DMF (3.3 mL) and H2O(0.1 mL). The reaction mixture was heated at 100 C for 20 h. After coolingto rt, 1 was filtered off under vacuum. The mixture of solvents wasconcentrated under vacuum and the residue was purified by flashchromatographyon silica gel to afford pure alkenes after drying under,vacuum (0.1 mbar). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | With pyridine; cesium fluoride; In dimethyl sulfoxide; at 105℃; for 2h;Inert atmosphere; Schlenk technique; | General procedure: An oven-dried Schlenk tube, containing a Teflon-coated magnetic stir bar was charged with CsF (228 mg, 1.5 mmol, 3 equiv) and bispinacolatodiboron (254 mg, 1 mmol, 2 equiv). Under an argon atmosphere, freshly distilled DMSO (0.4 mL), the appropriate aryl iodide (0.5mmol), and pyridine (0.4 to 1 equiv) were added successively. The reaction mixture was heated to 105 C and stirred for 2 h under argon. |
59%Chromat. | With copper(II) ferrite; potassium tert-butylate; In N,N-dimethyl-formamide; at 20℃; for 12h;Green chemistry; | General procedure: 4-Iodoanisole (0.813 mmol, 200 mg), bis(pinacolato)diboron (1.219 mmol, 309 mg) were dissolved in 3 mL of dmf followed by copper ferrite nanoparticles (5mol% with respect to 4-iodoanisole) and potassiumtert-butoxide (1.219 mmol, 137 mg) were added to a 10 mLcapped vial and stirred at RT for time indicated. After stirring, the mixture was diluted with diethyl ether and filtered through celite bed. The filtrate was extracted with water (3 times) and the organic phase was dried over anhydrous MgSO4. The crude product was subjected to analyze by GC-MS. The conversion yield is accurately measured based on the consumption of 4-iodoanisole and the side product formed due to protodeiodination. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
60% | With cobalt(II) oxalate dihydrate; caesium carbonate; N,N`-dimethylethylenediamine; In water; at 130℃; for 24h;Green chemistry; | General procedure: A mixture of cobalt(II) oxalate dihydrate(Sigma-Aldrich, 0.294 mmol), Cs2CO3 (2.94 mmol), pyrrolidinoneor aliphatic amide (1.47 mmol), DMEDA (0.588 mmol),distilled H2O (0.3 mL) and aryl halide (2.205 mmol) were addedto an 8.0-mL reaction vial fitted with a Teflon-sealed screw cap.The reaction mixture was stirred under air in a closed system at120 C and 130 C, respectively for 24 h. The heterogeneousmixture was subsequently cooled to r.t. and diluted withCH2Cl2. The combined organic extracts were dried over anhydNa2SO4, filtered and the solvent was removed under reducedpressure. The crude product was loaded into the column usingminimal amounts of CH2Cl2 and was purified by silica gel column chromatography to afford the N-arylated product. Theidentity and purity of products were confirmed by 1H NMR and13C NMR spectroscopic analysis. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With copper(l) iodide; (R,R)-N,N'-dimethyl-1,2-diaminocyclohexane; caesium carbonate; In N,N-dimethyl-formamide; at 100℃; for 2h; | General procedure: A solution of <strong>[57090-88-7]4-cyano-1H-imidazole</strong> (1000 mg, 10.74 mmol), 4-iodo -2-(trifluoromethyl)pyridine (3800 mg,14 mmol), (1R,2R)-N1,N2-dimethyl cyclohexane -1,2-diamine (150 mg, 1.07 mmol), CuI (200 mg, 1.07 mmol) and Cs2CO3 (7000 mg, 21.5 mmol) in 20 mL anhydrous DMF was stirred at 100 oC for 2 hours. The reaction mixture was cooled to room temperature and poured into 200 mL water. The mixture was extracted with ethyl acetate (80 mL*3). The organic layer were combined, washed by brine, dried by Na2SO4 and evaporated. The crude product was purified by silica flash column to afford compound 2 as white solid(1.5 g, 59percent yield). |
A176380 [328-73-4]
1-Iodo-3,5-bis(trifluoromethyl)benzene
Similarity: 1.00
A196945 [1214372-82-3]
1-(Difluoromethyl)-4-iodobenzene
Similarity: 0.95
A671808 [444-29-1]
1-Iodo-2-(trifluoromethyl)benzene
Similarity: 0.91
A636317 [59382-39-7]
1-Fluoro-4-iodo-2-(trifluoromethyl)benzene
Similarity: 0.85
A176380 [328-73-4]
1-Iodo-3,5-bis(trifluoromethyl)benzene
Similarity: 1.00
A196945 [1214372-82-3]
1-(Difluoromethyl)-4-iodobenzene
Similarity: 0.95
A671808 [444-29-1]
1-Iodo-2-(trifluoromethyl)benzene
Similarity: 0.91
A636317 [59382-39-7]
1-Fluoro-4-iodo-2-(trifluoromethyl)benzene
Similarity: 0.85
A176380 [328-73-4]
1-Iodo-3,5-bis(trifluoromethyl)benzene
Similarity: 1.00
A671808 [444-29-1]
1-Iodo-2-(trifluoromethyl)benzene
Similarity: 0.91
A140659 [1027513-14-9]
1-Fluoro-3-iodo-5-(trifluoromethyl)benzene
Similarity: 0.85
A636317 [59382-39-7]
1-Fluoro-4-iodo-2-(trifluoromethyl)benzene
Similarity: 0.85