Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 402-43-7 Chemical Structure| 402-43-7
Chemical Structure| 402-43-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations      Show More

Qiao Lin ; Ethan H. Spielvogel ; Tianning Diao ;

Abstract: The capture of carbon-centered radicals at a nickel(II) center is commonly featured in recent cross-coupling and metallaphotoredox catalytic reactions. Despite its widespread application in catalysis, this fundamental step lacks experimental characterization. This report portrays radical capture at catalytically relevant nickel(II) centers from several aspects, including the structure-activity relationships of the ligands, the mechanism, the kinetics, and the stereoselectivity. Spectroscopic data provide evidence for the formation of a nickel(III) intermediate. Strikingly different reactivity between nickel-aryl and nickel-alkyl complexes implies different rate-determining steps for C(sp3)–C(sp3) and C(sp2)–C(sp3) bond formation. Kinetic data benchmark the capture rates on the scale of 10[7] M−1s−1 and 10[6] M−1s−1 for primary and secondary radicals, respectively. Overall, the activation energy is higher than that of previous computational estimations. Finally, stoichiometric experiments with well-defined chiral nickel complexes demonstrate that the radical trapping step can confer diastereoselectivity and enantioselectivity with a drastic ligand effect.

Guo, Sheng ; Wu, Yifan ; Luo, Shao-Xiong Lennon ; Swager, Timothy M. ;

Abstract: Heterogenous catalysts with confined nanoporous catalytic sites are shown to have high activity and size selectivity. A solution-processable nanoporous organic polymer (1-BPy-Pd) catalyst displays high catalytic performance (TON > 200K) in the heterogeneous Suzuki–Miyaura coupling (SMC) reaction and can be used for the preparation of the intermediates in the synthesis of pharmaceutical agents. In comparison to the homogeneous catalyst analogue (2,2′-BPy)PdCl2, the heterogenous system offers size-dependent catalytic activity when bulkier substrates are used. Furthermore, the catalyst can be used to create catalytic impellers that simplify its use and recovery. We found that this system also works for applications in heterogenous Heck and nitroarenes reduction reactions. The metal-binding nanoporous polymer reported here represents a versatile platform for size-selective heterogeneous and recyclable catalysts.

Keywords: nanoporous organic polymer ; heterogeneous catalyst ; Suzuki−Miyaura coupling reaction ; size-selective reaction ; catalyst processing

Alternative Products

Product Details of 4-Bromobenzotrifluoride

CAS No. :402-43-7
Formula : C7H4BrF3
M.W : 225.01
SMILES Code : FC(C1=CC=C(Br)C=C1)(F)F
MDL No. :MFCD00000398
InChI Key :XLQSXGGDTHANLN-UHFFFAOYSA-N
Pubchem ID :67872

Safety of 4-Bromobenzotrifluoride

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H225-H315-H319
Precautionary Statements:P210-P233-P240-P241-P242-P243-P264-P280-P303+P361+P353-P305+P351+P338-P332+P313-P337+P313-P370+P378-P403+P235-P501
Class:3
UN#:1993
Packing Group:

Application In Synthesis of 4-Bromobenzotrifluoride

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 402-43-7 ]
  • Downstream synthetic route of [ 402-43-7 ]

[ 402-43-7 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 402-43-7 ]
  • [ 75927-49-0 ]
  • [ 1242770-50-8 ]
References: [1] New Journal of Chemistry, 2017, vol. 41, # 8, p. 3172 - 3176.
 

Historical Records

Technical Information

Categories