Structure of 501944-43-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
| Size | Price | VIP Price |
DE Stock US Stock |
Asia Stock Global Stock |
In Stock |
| {[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock Inquiry - | Login - + |
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Design and Synthesis of Porous Materials for Water and Energy Applications
Carey, Cassidy ;
Abstract: Access to clean water and energy is one of the greatest challenges facing humanity. The water and energy sectors are intertwined in a way that if one is under stress the other is also affected. This phenomenon, also known as the water-energy nexus, drives the need to develop more efficient water purification and energy storage materials to meet increasing demands. Recently, new classes of porous materials have emerged due to their exceptionally high surface areas and unique ability to selectively adsorb and store a target chemical species in both the liquid and gas phases. Due to varying chemical compositions and properties, one challenge within the field of porous materials is selecting an appropriate material for an intended application. This thesis seeks to develop structure-property relationships by synthesizing a variety of porous materials and evaluating performance governing properties across applications ranging from water purification, battery technology, and gas storage. Chapter 1 serves as an introduction to this thesis, contextualizing the major challenges in both porous material development and across each application. In Chapter 2, mixed matrix ion exchanges membranes (IEMs) are designed for simultaneous desalination and boron removal through the incorporation of boron selective porous aromatic frameworks (PAF-1-NMDG) into crosslinked methacrylate monomer-based IEM polymer matrices. Over 90% of the PAF-1-NMDG chelation sites were accessible to boron within the IEMs. The incorporation of PAF-1-NMDG substantially impacted IEM ionic conductivity with 13 wt % PAF-1-NMDG incorporation resulting in 20 % and 15 % reductions in ionic conductivity compared to the controls for the AEMs and CEMs, respectively. The effects of PAF-1-NMDG addition on IEM co-ion concentration were vastly different between the AEMs and CEMs with co-ion concentration remaining constant across all loadings for the AEMs but increasing by an order of magnitude at only 5 wt % loading for the CEMs. The influences of PAF-1-NMDG on ion transport properties were attributed to increased ion diffusional path lengths with the IEMs and interfacial interactions between PAF-1-NMDG and the surrounding polymer matrices. In Chapter 3, mixed matrix membranes are designed for non-aqueous redox flow batteries by incorporating a series of functionalized metal-organic frameworks (MOFs) into a linear polymer matrix. The UiO-66-NH2-based mixed matrix membranes (MMMs) showed exceptional selectivity with a redox species permeability on the order of 5 × 10-10 cm2 /s. Notably, MOFs dual modified with polymers and sulfate ester groups showed significantly improved dispersion compared to those without polymer modification. Furthermore, the ionic conductivities of the dual-modified MOF-based MMMs were an order of magnitude higher than the UiO-66-NH2 based MMMs. Chapter 4 establishes strategies to suppress MOF interpenetration using lattice interacting additives. MOFs synthesized in the presence of geometrically designed additives exhibited a 20 % increase in gravimetric surface area compared to their interpenetrated counterparts. Furthermore, the optical properties of the synthesized MOFs enabled in-situ monitoring of interpenetration, laying groundwork for mechanistic understandings that are generally absent in the field. Chapter 5 concludes the major findings of this work and discusses future directions of porous material design, with emphasis on forthcoming directions within the field such as MOF morphology engineering. This work highlights new synthetic strategies across each application and establishes structure-property relationships related to PAF-IEM interactions, MOF functionalization and interpenetration. This work will improve porous material design across many applications and result in the development of next-generation water purification and energy storage materials.
Show More >
| CAS No. : | 501944-43-0 |
| Formula : | C14H13BO4 |
| M.W : | 256.06 |
| SMILES Code : | O=C(C1=CC=C(C2=CC=C(B(O)O)C=C2)C=C1)OC |
| MDL No. : | MFCD08544388 |
| InChI Key : | OBHWJBMJYPCGPE-UHFFFAOYSA-N |
| Pubchem ID : | 16244481 |
| GHS Pictogram: |
|
| Signal Word: | Warning |
| Hazard Statements: | H315-H319-H335 |
| Precautionary Statements: | P261-P305+P351+P338 |
| Num. heavy atoms | 19 |
| Num. arom. heavy atoms | 12 |
| Fraction Csp3 | 0.07 |
| Num. rotatable bonds | 4 |
| Num. H-bond acceptors | 4.0 |
| Num. H-bond donors | 2.0 |
| Molar Refractivity | 72.98 |
| TPSA ? Topological Polar Surface Area: Calculated from |
66.76 Ų |
| Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
| Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.31 |
| Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.82 |
| Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.68 |
| Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.8 |
| Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.12 |
| Log S (ESOL):? ESOL: Topological method implemented from |
-3.09 |
| Solubility | 0.21 mg/ml ; 0.00082 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (Ali)? Ali: Topological method implemented from |
-3.35 |
| Solubility | 0.114 mg/ml ; 0.000446 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.89 |
| Solubility | 0.0333 mg/ml ; 0.00013 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
| BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
| P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
| CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
| CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
| CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
| CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
| CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
| Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.22 cm/s |
| Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
| Ghose? Ghose filter: implemented from |
None |
| Veber? Veber (GSK) filter: implemented from |
0.0 |
| Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
| Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
| Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
| PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
| Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
| Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
| Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.13 |
Tags: 501944-43-0 synthesis path| 501944-43-0 SDS| 501944-43-0 COA| 501944-43-0 purity| 501944-43-0 application| 501944-43-0 NMR| 501944-43-0 COA| 501944-43-0 structure

A397936 [99768-12-4]
(4-(Methoxycarbonyl)phenyl)boronic acid
Similarity: 0.95

A112250 [1048330-10-4]
(3-(Methoxycarbonyl)-4-methylphenyl)boronic acid
Similarity: 0.94

A148335 [158429-38-0]
(4-(Methoxycarbonyl)-2-methylphenyl)boronic acid
Similarity: 0.93

A225713 [99769-19-4]
3-(Methoxycarbonyl)phenylboronic acid
Similarity: 0.93

A256707 [177735-55-6]
(3,5-Bis(methoxycarbonyl)phenyl)boronic acid
Similarity: 0.93

A397936 [99768-12-4]
(4-(Methoxycarbonyl)phenyl)boronic acid
Similarity: 0.95

A112250 [1048330-10-4]
(3-(Methoxycarbonyl)-4-methylphenyl)boronic acid
Similarity: 0.94

A148335 [158429-38-0]
(4-(Methoxycarbonyl)-2-methylphenyl)boronic acid
Similarity: 0.93

A225713 [99769-19-4]
3-(Methoxycarbonyl)phenylboronic acid
Similarity: 0.93

A256707 [177735-55-6]
(3,5-Bis(methoxycarbonyl)phenyl)boronic acid
Similarity: 0.93

A397936 [99768-12-4]
(4-(Methoxycarbonyl)phenyl)boronic acid
Similarity: 0.95

A112250 [1048330-10-4]
(3-(Methoxycarbonyl)-4-methylphenyl)boronic acid
Similarity: 0.94

A148335 [158429-38-0]
(4-(Methoxycarbonyl)-2-methylphenyl)boronic acid
Similarity: 0.93

A225713 [99769-19-4]
3-(Methoxycarbonyl)phenylboronic acid
Similarity: 0.93

A256707 [177735-55-6]
(3,5-Bis(methoxycarbonyl)phenyl)boronic acid
Similarity: 0.93
Precautionary Statements-General | |
| Code | Phrase |
| P101 | If medical advice is needed,have product container or label at hand. |
| P102 | Keep out of reach of children. |
| P103 | Read label before use |
Prevention | |
| Code | Phrase |
| P201 | Obtain special instructions before use. |
| P202 | Do not handle until all safety precautions have been read and understood. |
| P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
| P211 | Do not spray on an open flame or other ignition source. |
| P220 | Keep/Store away from clothing/combustible materials. |
| P221 | Take any precaution to avoid mixing with combustibles |
| P222 | Do not allow contact with air. |
| P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
| P230 | Keep wetted |
| P231 | Handle under inert gas. |
| P232 | Protect from moisture. |
| P233 | Keep container tightly closed. |
| P234 | Keep only in original container. |
| P235 | Keep cool |
| P240 | Ground/bond container and receiving equipment. |
| P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
| P242 | Use only non-sparking tools. |
| P243 | Take precautionary measures against static discharge. |
| P244 | Keep reduction valves free from grease and oil. |
| P250 | Do not subject to grinding/shock/friction. |
| P251 | Pressurized container: Do not pierce or burn, even after use. |
| P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
| P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
| P262 | Do not get in eyes, on skin, or on clothing. |
| P263 | Avoid contact during pregnancy/while nursing. |
| P264 | Wash hands thoroughly after handling. |
| P265 | Wash skin thouroughly after handling. |
| P270 | Do not eat, drink or smoke when using this product. |
| P271 | Use only outdoors or in a well-ventilated area. |
| P272 | Contaminated work clothing should not be allowed out of the workplace. |
| P273 | Avoid release to the environment. |
| P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
| P281 | Use personal protective equipment as required. |
| P282 | Wear cold insulating gloves/face shield/eye protection. |
| P283 | Wear fire/flame resistant/retardant clothing. |
| P284 | Wear respiratory protection. |
| P285 | In case of inadequate ventilation wear respiratory protection. |
| P231 + P232 | Handle under inert gas. Protect from moisture. |
| P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
| Code | Phrase |
| P301 | IF SWALLOWED: |
| P304 | IF INHALED: |
| P305 | IF IN EYES: |
| P306 | IF ON CLOTHING: |
| P307 | IF exposed: |
| P308 | IF exposed or concerned: |
| P309 | IF exposed or if you feel unwell: |
| P310 | Immediately call a POISON CENTER or doctor/physician. |
| P311 | Call a POISON CENTER or doctor/physician. |
| P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
| P313 | Get medical advice/attention. |
| P314 | Get medical advice/attention if you feel unwell. |
| P315 | Get immediate medical advice/attention. |
| P320 | |
| P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
| P321 | |
| P322 | |
| P330 | Rinse mouth. |
| P331 | Do NOT induce vomiting. |
| P332 | IF SKIN irritation occurs: |
| P333 | If skin irritation or rash occurs: |
| P334 | Immerse in cool water/wrap n wet bandages. |
| P335 | Brush off loose particles from skin. |
| P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
| P337 | If eye irritation persists: |
| P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
| P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
| P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
| P342 | If experiencing respiratory symptoms: |
| P350 | Gently wash with plenty of soap and water. |
| P351 | Rinse cautiously with water for several minutes. |
| P352 | Wash with plenty of soap and water. |
| P353 | Rinse skin with water/shower. |
| P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
| P361 | Remove/Take off immediately all contaminated clothing. |
| P362 | Take off contaminated clothing and wash before reuse. |
| P363 | Wash contaminated clothing before reuse. |
| P370 | In case of fire: |
| P371 | In case of major fire and large quantities: |
| P372 | Explosion risk in case of fire. |
| P373 | DO NOT fight fire when fire reaches explosives. |
| P374 | Fight fire with normal precautions from a reasonable distance. |
| P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
| P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
| P378 | |
| P380 | Evacuate area. |
| P381 | Eliminate all ignition sources if safe to do so. |
| P390 | Absorb spillage to prevent material damage. |
| P391 | Collect spillage. Hazardous to the aquatic environment |
| P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
| P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
| P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
| P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
| P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
| P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
| P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
| P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
| P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
| P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
| P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
| P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
| P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
| P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
| P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
| P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
| P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
| P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
| P370 + P376 | In case of fire: Stop leak if safe to Do so. |
| P370 + P378 | In case of fire: |
| P370 + P380 | In case of fire: Evacuate area. |
| P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
| P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
| Code | Phrase |
| P401 | |
| P402 | Store in a dry place. |
| P403 | Store in a well-ventilated place. |
| P404 | Store in a closed container. |
| P405 | Store locked up. |
| P406 | Store in corrosive resistant/ container with a resistant inner liner. |
| P407 | Maintain air gap between stacks/pallets. |
| P410 | Protect from sunlight. |
| P411 | |
| P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
| P413 | |
| P420 | Store away from other materials. |
| P422 | |
| P402 + P404 | Store in a dry place. Store in a closed container. |
| P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
| P403 + P235 | Store in a well-ventilated place. Keep cool. |
| P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
| P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
| P411 + P235 | Keep cool. |
Disposal | |
| Code | Phrase |
| P501 | Dispose of contents/container to ... |
| P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
| Code | Phrase |
| H200 | Unstable explosive |
| H201 | Explosive; mass explosion hazard |
| H202 | Explosive; severe projection hazard |
| H203 | Explosive; fire, blast or projection hazard |
| H204 | Fire or projection hazard |
| H205 | May mass explode in fire |
| H220 | Extremely flammable gas |
| H221 | Flammable gas |
| H222 | Extremely flammable aerosol |
| H223 | Flammable aerosol |
| H224 | Extremely flammable liquid and vapour |
| H225 | Highly flammable liquid and vapour |
| H226 | Flammable liquid and vapour |
| H227 | Combustible liquid |
| H228 | Flammable solid |
| H229 | Pressurized container: may burst if heated |
| H230 | May react explosively even in the absence of air |
| H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
| H240 | Heating may cause an explosion |
| H241 | Heating may cause a fire or explosion |
| H242 | Heating may cause a fire |
| H250 | Catches fire spontaneously if exposed to air |
| H251 | Self-heating; may catch fire |
| H252 | Self-heating in large quantities; may catch fire |
| H260 | In contact with water releases flammable gases which may ignite spontaneously |
| H261 | In contact with water releases flammable gas |
| H270 | May cause or intensify fire; oxidizer |
| H271 | May cause fire or explosion; strong oxidizer |
| H272 | May intensify fire; oxidizer |
| H280 | Contains gas under pressure; may explode if heated |
| H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
| H290 | May be corrosive to metals |
Health hazards | |
| Code | Phrase |
| H300 | Fatal if swallowed |
| H301 | Toxic if swallowed |
| H302 | Harmful if swallowed |
| H303 | May be harmful if swallowed |
| H304 | May be fatal if swallowed and enters airways |
| H305 | May be harmful if swallowed and enters airways |
| H310 | Fatal in contact with skin |
| H311 | Toxic in contact with skin |
| H312 | Harmful in contact with skin |
| H313 | May be harmful in contact with skin |
| H314 | Causes severe skin burns and eye damage |
| H315 | Causes skin irritation |
| H316 | Causes mild skin irritation |
| H317 | May cause an allergic skin reaction |
| H318 | Causes serious eye damage |
| H319 | Causes serious eye irritation |
| H320 | Causes eye irritation |
| H330 | Fatal if inhaled |
| H331 | Toxic if inhaled |
| H332 | Harmful if inhaled |
| H333 | May be harmful if inhaled |
| H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
| H335 | May cause respiratory irritation |
| H336 | May cause drowsiness or dizziness |
| H340 | May cause genetic defects |
| H341 | Suspected of causing genetic defects |
| H350 | May cause cancer |
| H351 | Suspected of causing cancer |
| H360 | May damage fertility or the unborn child |
| H361 | Suspected of damaging fertility or the unborn child |
| H361d | Suspected of damaging the unborn child |
| H362 | May cause harm to breast-fed children |
| H370 | Causes damage to organs |
| H371 | May cause damage to organs |
| H372 | Causes damage to organs through prolonged or repeated exposure |
| H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
| Code | Phrase |
| H400 | Very toxic to aquatic life |
| H401 | Toxic to aquatic life |
| H402 | Harmful to aquatic life |
| H410 | Very toxic to aquatic life with long-lasting effects |
| H411 | Toxic to aquatic life with long-lasting effects |
| H412 | Harmful to aquatic life with long-lasting effects |
| H413 | May cause long-lasting harmful effects to aquatic life |
| H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL

