Structure of 50606-58-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 50606-58-1 |
Formula : | C12H16ClNO |
M.W : | 225.71 |
SMILES Code : | O=C1CN(CC2=CC=CC=C2)CCC1.[H]Cl |
MDL No. : | MFCD00012791 |
InChI Key : | OVWSFXNSJDMRPV-UHFFFAOYSA-N |
Pubchem ID : | 3084924 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.42 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 67.3 |
TPSA ? Topological Polar Surface Area: Calculated from |
20.31 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.47 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.12 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.93 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.59 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.82 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.96 |
Solubility | 0.248 mg/ml ; 0.0011 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.54 |
Solubility | 0.65 mg/ml ; 0.00288 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.42 |
Solubility | 0.0864 mg/ml ; 0.000383 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.92 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.24 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogen;palladium 10% on activated carbon; In methanol; under 2844.39 Torr; for 16h; | To a stirred solution of N-benzyl-3-piperidone hydrochloride hydrate (4.2 g, 18.6 mmol) and 10% palladium on carbon (0.8 g) in degassed methanol (200 mL) was added hydrogen gas to 55 psi. The reaction mixture was stirred for 16 hr and then filtered through a pad of celite. The celite was washed with methanol (200 mL). The filtrates were combined and concentrated in vacuo to a colorless oil. The oil was dissolved in tetrahydrofuran (200 mL) and then treated with di-t-butyl-dicarbonate (5.27 g, 24.1 mmol) and a saturated aqueous sodium bicarbonate solution (50 mL). The reaction was stirred for 4 hr and then concentrated in vacuo to a white solid. The solid was partitioned between ethyl acetate and 1N hydrochloric acid. The organic layer was separated, washed with 1N sodium hydroxide and brine, dried over Na2SO4, and evaporated in vacuo to a colorless oil. The oil was purified by flash chromatography (silica gel, hexane:ethyl acetate 3:1) to yield 2.93 g of a colorless oil. 1H NMR (300 MHz, CDCl3) delta 3.99 (s, 2H), 3.58 (t, J=6, 2H), 2.46 (t, J=6, 2H), 1.97 (p, J=6, 2H), 1.45 (s, 9H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In chloroform; at 0 - 20℃; for 1h; | EXAMPLE 3; Step 1: To 1-benzyl-3-piperidone HCl salt hydrate (1 eq, 0.111 mol, 25 g) completely dissolved in chloroform (100 mL) and triethylamine (1.1 eq, 0.122 mol, 17 mL) was added methyl chloroformate (1.1 eq, 0.122 mol, 9.4 mL) dropwise at 0 C. After the dropwise addition was complete, additional methyl chloroformate (0.7 eq, 0.078 mol, 6 mL) was added, the reaction mixture warmed to room temperature, and stirred 1 h. The volatiles were removed in vacuo and the resulting residue was taken up in 1N HCl (100 mL) and washed with hexanes (3×70 mL). The aqueous layer was then extracted with ethyl acetate (3×100 mL), the combined ethyl acetate layers washed with brine (1×50 mL), dried (Na2SO4), and concentrated in vacuo to give 23 as an orange oil (10 g), which was used without further purification. Note: If the aqueous layer retains some product, it can be completely extracted using 10% isopropyl alcohol in chloroform. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
74.7% | With ethanol; sodium hydride; at 0 - 20℃; for 72h; | 1-Benzyl-3-(1H-pyrrolo[2,3-b]pyridin-3-yl)-piperidin-3-ol. (Compound 3); A 60% dispersion of NaH in mineral oil (9.5 g, 179 mmol) was slowly added to 150 ml EtOH (0 C.). This solution was added to 7-azaindole (5.3 g, 44.9 mmol) and 11.25 g (44.9 mmol) 1-benzyl-piperidin-3-one (as HCl salt). The resulting mixture was stirred for 72 hours at room temperature. Ethylacetate was added to the mixture and the organic layer was washed three times with a saturated NaHCO3 solution, dried (Na2SO4), filtered and concentrated. The resulting residue was purified by flash chromatography (diethyl ether/ethylacetate gradient (1:1 to pure ethylacetate)) to give compound 3 as an oil (10.3 g, 74.7%). 1H-NMR (400 MHz, CDCl3): delta 10.0 (bs, 1H), 8.27 (dd, J=5 Hz, 2 Hz, 1H), 8.14 (dd, J=8 Hz, 2 Hz, 1H), 7.35-7.24 (m, 6H), 7.03 (dd, J=5 Hz, 8 Hz, 1H), 3.96-3.88 (bs, 1H), 3.60 (dd, J gem=13 Hz, 2H), 3.07-3.01 (m, 1H), 2.95-2.89 (m, 1H), 2.39 (d, J=10 Hz, 1H), 2.16-1.96 (m,2H), 1.92-1.78 (m, 2H), 1.72-1.65 (m, 1H). (TLC EtOAc Rf 0.09). |