Home Cart 0 Sign in  
X

[ CAS No. 5443-49-2 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 5443-49-2
Chemical Structure| 5443-49-2
Chemical Structure| 5443-49-2
Structure of 5443-49-2 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 5443-49-2 ]

Related Doc. of [ 5443-49-2 ]

Alternatived Products of [ 5443-49-2 ]
Product Citations

Product Details of [ 5443-49-2 ]

CAS No. :5443-49-2 MDL No. :MFCD00006965
Formula : C9H7BrO Boiling Point : -
Linear Structure Formula :- InChI Key :WQRWNOKNRHCLHV-TWGQIWQCSA-N
M.W : 211.06 Pubchem ID :5369403
Synonyms :

Calculated chemistry of [ 5443-49-2 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 11
Num. arom. heavy atoms : 6
Fraction Csp3 : 0.0
Num. rotatable bonds : 2
Num. H-bond acceptors : 1.0
Num. H-bond donors : 0.0
Molar Refractivity : 49.41
TPSA : 17.07 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : Yes
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -5.66 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.83
Log Po/w (XLOGP3) : 2.71
Log Po/w (WLOGP) : 2.51
Log Po/w (MLOGP) : 2.46
Log Po/w (SILICOS-IT) : 2.86
Consensus Log Po/w : 2.47

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -3.13
Solubility : 0.157 mg/ml ; 0.000746 mol/l
Class : Soluble
Log S (Ali) : -2.72
Solubility : 0.4 mg/ml ; 0.0019 mol/l
Class : Soluble
Log S (SILICOS-IT) : -3.29
Solubility : 0.107 mg/ml ; 0.000508 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 2.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 2.12

Safety of [ 5443-49-2 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P501-P270-P264-P280-P302+P352-P337+P313-P305+P351+P338-P362+P364-P332+P313-P301+P312+P330 UN#:N/A
Hazard Statements:H302-H315-H319 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 5443-49-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 5443-49-2 ]
  • Downstream synthetic route of [ 5443-49-2 ]

[ 5443-49-2 ] Synthesis Path-Upstream   1~8

  • 1
  • [ 5443-49-2 ]
  • [ 105994-77-2 ]
Reference: [1] Chemische Berichte, 1925, vol. 58, p. 537
  • 2
  • [ 104-55-2 ]
  • [ 5443-49-2 ]
Reference: [1] Tetrahedron Letters, 1981, vol. 22, # 34, p. 3301 - 3304
[2] Journal fuer Praktische Chemie (Leipzig), 1981, vol. 323, # 4, p. 673 - 676
[3] Transition Metal Chemistry, 2010, vol. 35, # 5, p. 507 - 511
[4] Chemische Berichte, 1909, vol. 42, p. 2878
[5] Chemische Berichte, 1884, vol. 17, p. 1815
[6] Patent: US2009/118320, 2009, A1, . Location in patent: Page/Page column 17
[7] Patent: EP2044937, 2009, A1, . Location in patent: Page/Page column 16
[8] Chemistry - A European Journal, 2015, vol. 21, # 47, p. 16982 - 16989
[9] European Journal of Organic Chemistry, 2018, vol. 2018, # 23, p. 2958 - 2962
  • 3
  • [ 64-17-5 ]
  • [ 5443-49-2 ]
  • [ 4192-77-2 ]
YieldReaction ConditionsOperation in experiment
80% With 1,8-diazabicyclo[5.4.0]undec-7-ene; 1,3-bis(mesityl)imidazolium chloride In tetrahydrofuran at 20℃; Inert atmosphere General procedure: To a stirred suspension of IMes*HCl (9 mg, 0.025 mmol) in anhyd THF (2 mL) was added DBU (0.6 mmol, 88 μL) via micro syringe under N2. After the mixture was stirred at room temperature for 30 min, α-halo-α,β-unsaturated aldehyde (0.5 mmol) and alcohol (1.5 mmol) were loaded, the reaction mixture was then stirred at room temperature until full consume of the starting aldehyde indicated by TLC. After concentration of the mixture under vacuum, the crude product was purified through flash column chromatography (silica gel, PE/EtOAc, 10:1-15:1) to give desired product.
Reference: [1] Tetrahedron, 2012, vol. 68, # 32, p. 6498 - 6503
  • 4
  • [ 66894-04-0 ]
  • [ 5443-49-2 ]
Reference: [1] Chemistry - A European Journal, 2012, vol. 18, # 7, p. 1914 - 1917
[2] Chemische Berichte, 1909, vol. 42, p. 2878
[3] Chemische Berichte, 1884, vol. 17, p. 1815
[4] Tetrahedron Letters, 1996, vol. 37, # 14, p. 2377 - 2380
[5] Organic Process Research and Development, 1999, vol. 3, # 6, p. 389 - 393
[6] Chemistry - A European Journal, 2015, vol. 21, # 47, p. 16982 - 16989
  • 5
  • [ 14371-10-9 ]
  • [ 5443-49-2 ]
Reference: [1] J. Gen. Chem. USSR (Engl. Transl.), 1982, vol. 52, p. 1380 - 1382[2] Zhurnal Obshchei Khimii, 1982, vol. 52, # 7, p. 1563 - 1566
[3] J. Gen. Chem. USSR (Engl. Transl.), 1982, vol. 52, # 4, p. 696 - 702[4] Zhurnal Obshchei Khimii, 1982, vol. 52, # 4, p. 801 - 808
[5] Organic Process Research and Development, 1999, vol. 3, # 6, p. 389 - 393
  • 6
  • [ 14371-10-9 ]
  • [ 5443-49-2 ]
Reference: [1] Tetrahedron Letters, 2010, vol. 51, # 20, p. 2708 - 2712
  • 7
  • [ 94579-37-0 ]
  • [ 100-52-7 ]
  • [ 5443-49-2 ]
Reference: [1] Chemische Berichte, 1962, vol. 95, p. 3003 - 3007
  • 8
  • [ 60-29-7 ]
  • [ 5443-49-2 ]
  • [ 3463-27-2 ]
Reference: [1] Chemische Berichte, 1925, vol. 58, p. 2076
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Additions of Organometallic Reagents • Acetal Formation • Acid-Catalyzed Equilibration of Alkenes • Acid-Catalyzed Rearrangement of Alkenes • Acid-Catalyzed α -Halogenation of Ketones • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Addition of a Hydrogen Halide to an Internal Alkyne • Addition of Hydrogen Halides Forms Geminal Dihaloalkanes • Addition of Radicals to Alkenes • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Alcohols from Haloalkanes by Acetate Substitution-Hydrolysis • Alcohols React with PX3 • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldehydes May Made by Terminal Alkynes Though Hydroboration-oxidation • Aldol Addition • Aldol Condensation • Alkene Hydration • Alkenes React with Ozone to Produce Carbonyl Compounds • Alkyl Halide Occurrence • Alkylation of Aldehydes or Ketones • Alkylation of an Alkynyl Anion • Alkylation of Enolate Ions • Allylic Deprotonation • Allylic Halides Undergo SN1 Reactions • Allylic Substitution • Amides Can Be Converted into Aldehydes • An Alkane are Prepared from an Haloalkane • Barbier Coupling Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Baylis-Hillman Reaction • Benzylic Oxidation • Birch Reduction • Birch Reduction of Benzene • Blanc Chloromethylation • Brown Hydroboration • Bucherer-Bergs Reaction • Carbene Addition to Double Bonds • Catalytic Hydrogenation of Alkenes • Clemmensen Reduction • Complete Benzylic Oxidations of Alkyl Chains • Complete Benzylic Oxidations of Alkyl Chains • Complex Metal Hydride Reductions • Conjugated Enone Takes Part in 1,4-Additions • Conversion of Amino with Nitro • Convert Aldonic Acid into the Lower Aldose by Oxidative Decarboxylation • Convert Esters into Aldehydes Using a Milder Reducing Agent • Convert Haloalkanes into Alcohols by SN2 • Corey-Chaykovsky Reaction • Corey-Fuchs Reaction • Cyanohydrins can be Convert to Carbonyl Compounds under Basic Conditions • Deoxygenation of the Carbonyl Group • Deprotonation of a Carbonyl Compound at the α -Carbon • Deprotonation of Methylbenzene • DIBAL Attack Nitriles to Give Ketones • Dimerization, Oligomerization of Alkenes • Directing Electron-Donating Effects of Alkyl • Dissolving-Metal Reduction of an Alkyne • Dithioacetal Formation • Electrocyclic Reactions • Electrophilic Addition of Halogen to Alkynes • Electrophilic Addition of HX to Alkenes • Electrophilic Chloromethylation of Polystyrene • Elimination from Dihaloalkanes to Give Haloalkenes • Enamine Formation • Enamines Can Be Used to Prepare Alkylated Aldehydes • Enol-Keto Equilibration • Epoxidation • Epoxidation by Peroxycarboxylic Acids • Ether Synthesis by Oxymercuration-Demercuration • Exclusive 1,4-Addition of a Lithium Organocuprate • Fischer Indole Synthesis • Friedel-Crafts Alkylation of Benzene with Acyl Chlorides • Friedel-Crafts Alkylation of Benzene with Carboxylic Anhydrides • Friedel-Crafts Alkylation of Benzene with Haloalkanes • Friedel-Crafts Alkylation Using Alkenes • Friedel-Crafts Alkylations of Benzene Using Alkenes • Friedel-Crafts Alkylations Using Alcohols • Friedel-Crafts Reaction • General Reactivity • Grignard Reaction • Groups that Withdraw Electrons Inductively Are Deactivating and Meta Directing • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogenation • Halogenation of Alkenes • Halogenation of Benzene • Halogenation-double Dehydrohalogenation • Hantzsch Dihydropyridine Synthesis • Heck Reaction • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • Henry Nitroaldol Reaction • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hiyama Cross-Coupling Reaction • Horner-Wadsworth-Emmons Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydroboration of a Terminal Alkyne • Hydroboration-Oxidation • Hydrogen Bromide Add to Alkenes in Anti-Markovnikov Fashion • Hydrogenation • Hydrogenation by Palladium on Carbon Gives the Saturated Carbonyl Compound • Hydrogenation to Cyclohexane • Hydrogenation with Lindlar Catalyst • Hydrogenation with Lindlar Catalyst • Hydrogenolysis of Benzyl Ether • Hydrolysis of Imines to Aldehydes and Ketones • Hydroxylation • Imine Formation from Amines and Aldehydes or Ketones • Isomerization of β, γ -Unsaturated Carbonyl Compounds • Julia-Kocienski Olefination • Kinetics of Alkyl Halides • Knoevenagel Condensation • Kumada Cross-Coupling Reaction • Leuckart-Wallach Reaction • Lithium Organocuprate may Add to the α ,β -Unsaturated Carbonyl Function in 1,4-Fashion • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Methylation of Ammonia • Methylation of Ammonia • Michael Addition • Mukaiyama Aldol Reaction • Nitration of Benzene • Nozaki-Hiyama-Kishi Reaction • Nucleophilic Aromatic Substitution • Nucleophilic Aromatic Substitution with Amine • Osmium Tetroxide Reacts with Alkenes to Give Vicinal Diols • Oxidation of Alcohols to Carbonyl Compounds • Oxidation of Aldehydes Furnishes Carboxylic Acids • Oxidation of Alkyl-substituted Benzenes Gives Aromatic Ketones • Oxidative Cleavage of Double Bonds • Oxymercuration-Demercuration • Passerini Reaction • Paternò-Büchi Reaction • Pauson-Khand Cyclopentenone Synthesis • Periodic Acid Degradation of Sugars • Petasis Reaction • Phenylhydrazone and Phenylosazone Formation • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Polymerization of Alkenes • Preparation of Aldehydes and Ketones • Preparation of Alkenes • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkylbenzene • Preparation of Amines • Prins Reaction • Pyrroles, Furans, and Thiophenes are Prepared from γ-Dicarbonyl Compounds • Radical Addition of a Thiol to an Alkene • Radical Addition of HBr to Terminal Alkynes • Radical Addition of HBr to Terminal Alkynes • Radical Allylic Substitution • Reactions of Aldehydes and Ketones • Reactions of Alkenes • Reactions of Alkyl Halides with Reducing Metals • Reactions of Amines • Reactions of Benzene and Substituted Benzenes • Reactions of Dihalides • Reduction of an Ester to an Aldehyde • Reductive Amination • Reductive Amination • Reductive Removal of a Diazonium Group • Reformatsky Reaction • Reverse Sulfonation——Hydrolysis • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Selective Eduction of Acyl Chlorides to Produce Aldehydes • Sharpless Asymmetric Amino Hydroxylation • Sharpless Asymmetric Dihydroxylation • Specialized Acylation Reagents-Vilsmeier Reagent • Stetter Reaction • Stille Coupling • Stobbe Condensation • Strecker Synthesis • Substitution and Elimination Reactions of Alkyl Halides • Sulfonation of Benzene • Suzuki Coupling • Synthesis of 2-Amino Nitriles • Tebbe Olefination • The Acylium Ion Attack Benzene to Form Phenyl Ketones • The Claisen Rearrangement • The Cycloaddition of Dienes to Alkenes Gives Cyclohexenes • The Heck Reaction • The Nitro Group Conver to the Amino Function • The Wittig Reaction • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Vicinal Anti Dihydroxylation of Alkenes • Vilsmeier-Haack Reaction • Wacker Oxidation • Williamson Ether Syntheses • Wittig Reaction • Wolff-Kishner Reduction • Woodward Cis-Dihydroxylation
Historical Records

Related Functional Groups of
[ 5443-49-2 ]

Aryls

Chemical Structure| 97985-66-5

[ 97985-66-5 ]

(E)-3-(3-Bromophenyl)acrylaldehyde

Similarity: 0.85

Chemical Structure| 49678-04-8

[ 49678-04-8 ]

(E)-3-(4-Bromophenyl)acrylaldehyde

Similarity: 0.82

Chemical Structure| 120173-41-3

[ 120173-41-3 ]

5-Bromoisophthalaldehyde

Similarity: 0.76

Chemical Structure| 24078-12-4

[ 24078-12-4 ]

4-Bromo-2-methylbenzaldehyde

Similarity: 0.76

Chemical Structure| 188813-04-9

[ 188813-04-9 ]

3-Bromo-5-methylbenzaldehyde

Similarity: 0.76

Alkenes

Chemical Structure| 97985-66-5

[ 97985-66-5 ]

(E)-3-(3-Bromophenyl)acrylaldehyde

Similarity: 0.85

Chemical Structure| 49678-04-8

[ 49678-04-8 ]

(E)-3-(4-Bromophenyl)acrylaldehyde

Similarity: 0.82

Chemical Structure| 138555-58-5

[ 138555-58-5 ]

(E)-3-(2-Bromophenyl)acrylaldehyde

Similarity: 0.74

Chemical Structure| 32862-97-8

[ 32862-97-8 ]

3-(3-Bromophenyl)acrylic acid

Similarity: 0.71

Chemical Structure| 1200-07-3

[ 1200-07-3 ]

3-(4-Bromophenyl)acrylic acid

Similarity: 0.68

Bromides

Chemical Structure| 97985-66-5

[ 97985-66-5 ]

(E)-3-(3-Bromophenyl)acrylaldehyde

Similarity: 0.85

Chemical Structure| 49678-04-8

[ 49678-04-8 ]

(E)-3-(4-Bromophenyl)acrylaldehyde

Similarity: 0.82

Chemical Structure| 120173-41-3

[ 120173-41-3 ]

5-Bromoisophthalaldehyde

Similarity: 0.76

Chemical Structure| 24078-12-4

[ 24078-12-4 ]

4-Bromo-2-methylbenzaldehyde

Similarity: 0.76

Chemical Structure| 188813-04-9

[ 188813-04-9 ]

3-Bromo-5-methylbenzaldehyde

Similarity: 0.76

Aldehydes

Chemical Structure| 97985-66-5

[ 97985-66-5 ]

(E)-3-(3-Bromophenyl)acrylaldehyde

Similarity: 0.85

Chemical Structure| 49678-04-8

[ 49678-04-8 ]

(E)-3-(4-Bromophenyl)acrylaldehyde

Similarity: 0.82

Chemical Structure| 120173-41-3

[ 120173-41-3 ]

5-Bromoisophthalaldehyde

Similarity: 0.76

Chemical Structure| 24078-12-4

[ 24078-12-4 ]

4-Bromo-2-methylbenzaldehyde

Similarity: 0.76

Chemical Structure| 188813-04-9

[ 188813-04-9 ]

3-Bromo-5-methylbenzaldehyde

Similarity: 0.76

; ;