Structure of Ethyl 4-bromobenzoate
CAS No.: 5798-75-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Synthesis of Bis-Thioacid Derivatives of Diarylethene and Their Photochromic Properties
Aryal, Pramod ; Bietsch, Jonathan ; Grandhi, Gowri Sankar ; Chen, Richard ; Adhikari, Surya B ; Sarabamoun, Ephraiem S , et al.
Abstract: Diarylethenes (DAEs) are an important class ofphotoswitchable compounds that typically undergo reversiblephotochemical conversions between the open and closed cyclizedforms upon treatment with UV light or visible light. In this study,we introduced thioacid functional groups to several photochromicdithienylethene (DTE) derivatives and established a method thatcan be used to prepare these photoswitchable thioacids. Fourthioacid-functionalized diarylethene derivatives were synthesizedthrough the activation of carboxylic acids with N-hydroxysuccini-mide, followed by reactions with sodium hydrosulfide with yields over 90%. These derivatives exhibited reversible photoswitchingand photochromic properties upon treatment with ultraviolet (UV) and visible lights. The thioacid groups on these compounds canact as reaction sites for attaching other desirable functionalities. The photochromic properties of these new derivatives werecharacterized by using ultraviolet−visible (UV−vis) spectroscopy. The photocyclizations of one of the derivatives and its potassiumsalt were also characterized by using nuclear magnetic resonance (NMR) spectroscopy. The anions of the thioacid formed water-soluble photochromic systems, and their applications as colorimetric sensors in agarose hydrogels were demonstrated.
Show More >
Qing Yun Li ; Leigh Anna Hunt ; Kalpani Hirunika Wijesinghe ; Christine Curiac ; Ashley Williams ; Amala Dass , et al.
Abstract: Strong photoinduced oxidants are important to organic synthesis and solar energy conversion, to chemical fuels or electric. For these applications, visible light absorption is important to solar energy conversion and long-lived excited states are needed to drive catalysis. With respect to these desirable qualities, a series of five 5,6-dicyano[2,1,3]benzothiadiazole (DCBT) dyes are examined as organic chromophores that can serve as strong photooxidants in catalytic systems. The series utilizes a DCBT core with aryl groups on the periphery with varying electron donation strengths relative to the core. The dyes are studied via both steady-state and transient absorption and emission studies. Additionally, computational analysis, voltammetry, crystallography, and absorption spectroelectrochemistry are also used to better understand the behavior of these dyes. Ultimately, a strong photooxidant is arrived at with an exceptionally long excited state lifetime for an organic chromophore of 16 µs. The long-lived excited state photosensitizer is well-suited for use in catalysis, and visible light driven photosensitized water oxidation is demonstrated using a water-soluble photosensitizer.
Show More >
Purchased from AmBeed: 54512-79-7 ; 5798-75-4 ; 328-70-1 ; 586-76-5 ; 22385-77-9 ; 3109-63-5 ; 23783-42-8 ; 3375-31-3 ; 1122-58-3 ; 479094-62-7 ; 75-98-9 ; 51364-51-3 ; 538-75-0 ; 584-08-7 ; 1122-91-4 ; 123-30-8 ; 108-88-3 ; 109-77-3 ; 64-19-7 ; 603-35-0
Show More >
The Fundamental Electrochemical Characteristics of Rare-Earth Cluster-Based Metal–Organic Frameworks
Miller, Lars ;
Abstract: This work explores the synthesis and characterization of redox active rare-earth (RE) metal–organic frameworks (MOFs). MOFs are of interest due to their unique properties including permanent porosity, high surface area, and stability. Redox active MOFs have shown promise in a variety of applications including catalysis and molecular electronics. The second chapter will explore materials composed of Ce(IV) clusters bridged by ditopic carboxylate-based linkers. The synthesis of a series of UiO-66 analogues using the redox active metal Ce(IV) is completed with the original linker benzene-1,4-dicarboxylic acid as well as with various functionalized linkers including: 2-aminobenzene-1,4-dicarboxylic acid, 2-fluorobenzene1,4-dicarboxylic acid, 2-bromobenzene-1,4-dicarboxylic acid, 2,5-dihydroxybenzene-1,4- dicarboxylic acid, and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylic acid. The electrochemical differences between the analogues is explored via cyclic voltammetry. The third chapter delves into the synthesis of a series of redox active MOFs using the tetratopic tetrathiaflvalene-3,4,5,6-tetrakis(4-benzoic acid) (TTFTBA) redox active linker. Synthesis of a 3D cluster based MOF is attempted using Ce(III/IV), Yb(III), and Lu(III). Two new MOFs with shp topology are synthesized using TTFTBA and Yb(III) or Lu(III). The materials are characterized, and their redox properties are explored.
Show More >
Purchased from AmBeed: 5798-75-4 ; 445-29-4 ; 31366-25-3 ; 610-92-4 ; 131274-22-1 ; 3906-87-4 ; 652-36-8 ; 586-35-6
Show More >
CAS No. : | 5798-75-4 |
Formula : | C9H9BrO2 |
M.W : | 229.07 |
SMILES Code : | C1=C(C(OCC)=O)C=CC(=C1)Br |
MDL No. : | MFCD00016329 |
InChI Key : | XZIAFENWXIQIKR-UHFFFAOYSA-N |
Pubchem ID : | 22043 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.22 |
Num. rotatable bonds | 3 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 50.23 |
TPSA ? Topological Polar Surface Area: Calculated from |
26.3 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.61 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.23 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.63 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.97 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.71 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.83 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.47 |
Solubility | 0.0781 mg/ml ; 0.000341 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.46 |
Solubility | 0.0803 mg/ml ; 0.000351 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.74 |
Solubility | 0.0419 mg/ml ; 0.000183 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.4 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.44 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | With tris-(dibenzylideneacetone)dipalladium(0); caesium carbonate; 4,5-bis(diphenylphos4,5-bis(diphenylphosphino)-9,9-dimethylxanthenephino)-9,9-dimethylxanthene; In 1,4-dioxane; for 6h;Inert atmosphere; | General procedure: A round-bottomed flask was charged with Pd2(dba)3 (5 mol percent ), ligand (10 molpercent), aryl halide (1mmol), appropriate isoquinolinamine (1 mmol), base (1.5 mmol) and dry solvent (5 mL). Theflask was flushed with argon for 5 min. The mixture was heated at reflux under magnetic stirring.After cooling down to room temperature, the reaction mixture was concentrated and the residuewas purified by flash column chromatography on silica gel. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80 mg; 83 mg | Preparation Example 8 Lithium diisopropylamide (2.0 M heptane/THF/ethylbenzene solution, 5.57 mL) was added to a THF (7.5 mL) solution of <strong>[71902-33-5]3,5-difluoropyridine</strong> (1.26 g) under an argon gas atmosphere at -78° C. with dry ice/acetone, followed by stirring for 0.5 hours, and then zinc chloride (1.55 g) was added thereto, followed by stirring again for 0.5 hours at the same temperature. After the temperature was elevated to room temperature, a N-methylpyrrolidin-2-one (NMP) (7.5 mL) solution of ethyl 4-bromobenzoate (0.50 g) and tetrakis(triphenylphosphine)palladium (0.50 g) were added thereto, followed by stirring under heating for 8 hours at an oil temperature of 100° C., and cooling to room temperature. 1 M hydrochloric acid was added to the reaction liquid, and then the generated solid was collected by filtration, thereby obtaining 4-(3,5-difluoropyridin-4-yl)benzoic acid (Preparation Example 8-1, 80 mg). The filtrate was diluted with ethyl acetate and then washed with saturated brine, followed by drying and then concentrating under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate), thereby obtaining ethyl 4-(3,5-difluoropyridin-4-yl)benzoate (Preparation Example 8-2, 83 mg). |
A217220 [64169-34-2]
5-Bromoisobenzofuran-1(3H)-one
Similarity: 0.96
A337689 [19477-73-7]
6-Bromoisobenzofuran-1(3H)-one
Similarity: 0.96
A217220 [64169-34-2]
5-Bromoisobenzofuran-1(3H)-one
Similarity: 0.96
A337689 [19477-73-7]
6-Bromoisobenzofuran-1(3H)-one
Similarity: 0.96