Structure of 4'-Iodoacetanilide
CAS No.: 622-50-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 622-50-4 |
Formula : | C8H8INO |
M.W : | 261.06 |
SMILES Code : | CC(NC1=CC=C(I)C=C1)=O |
MDL No. : | MFCD00016352 |
InChI Key : | SIULLDWIXYYVCU-UHFFFAOYSA-N |
Pubchem ID : | 12147 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.12 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 53.47 |
TPSA ? Topological Polar Surface Area: Calculated from |
29.1 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.9 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.71 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.06 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.42 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.33 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.28 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.44 |
Solubility | 0.0953 mg/ml ; 0.000365 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.97 |
Solubility | 0.277 mg/ml ; 0.00106 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.74 |
Solubility | 0.0477 mg/ml ; 0.000183 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.97 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.52 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81%Chromat. | With triethylamine;(1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride; In 1,4-dioxane; at 80℃; for 5h; | [00168] To 25 mg PdCl2(dppf).CH2Cl2 in a reaction tube under nitrogen were added 4 ml dioxane, 0.43 ml (3 mmol) triethylamine, 0.47 ml (3.2 mmol) pinacolborane and 262 mg (1.0 mmol) p-iodoacetanilide. The p-iodoacetanilide did not react with the pinacolborane to liberate hydrogen. The reaction solution was warmed to 80 C. with stirring in an oil bath. After 1 h the solution had darkened and an aliquot (0.3 ml) was removed from the reaction solution, extracted into diethyl ether, washed several times with water and analysed by gc (fid detector, SGE HT5 capillary column). There was only one strong peak (of area 74% of total peak areas, uncorrected for response factors) in the gc and that was shown by gc/ms to be due to the desired arylboronic acid pinacol ester. On heating the reaction mixture for a further 4 h at 80 C., the apparent yield of the required boronic acid ester increased to 81% while that of the acetanilide and phenylboronic acid pinacol ester peak areas were 14% and 3.4% respectively. |
90%Chromat. | [00240] The catalyst amount in this reaction was reduced to approx. {fraction (1/35)} that used in the small scale reactions. The molar ratio of catalyst:iodide:pinacolborane:NEt3 is 1:1150:1500:2933. The amount of pinacolborane was 1.25 equivalents compared to the iodide. The pinacolborane was made from BH3?e2 by reaction with pinacol in dioxane. 50 ml of BH3?e2 were dissolved in 100 ml of dioxane in a 1 L Schlenk flask. To this was added dropwise 63.0 g of pinacol in 140 ml dioxane. After the addition was complete the solution was stirred at room temp. and then at 60 C. to ensure complete reaction of the BH3?e2. The solution contained a little white precipitate. [00241] The catalyst was activated prior to use by heating 1500 mg of PdCl2[dppf].CH2Cl2 with 30 ml of triethylamine in 370 ml dioxane at 80 C. from for 7.5 h. 67 ml of this dark brown solution was used in the reaction. [C00065] [00242] To the pinacolborane solution was added 120 ml (863 mmol) dry triethylamine, 92 g (352.5 mmol) p-iodoacetanilide and then 67 ml of the catalyst solution. The reaction solution was placed in the oil bath at 80 C. The solution became clear and pale brown in colour and after about 1 to 2 h, a precipitate of the amine.HI salt separated. After 5 h the reaction was over 90% complete. Heating was continued for several more hours after which no starting material was observed, by gc, to be in the reaction solution. The reaction product in a number of such reactions was always over 90% by gc, the only side product observed was acetanilide. No phenylboronic acid pinacol ester were seen in the gc unless very strong solutions were employed. [00243] The crude product was isolated by removing the amine salt from the solution at room temp. The excess pinacolborane was destroyed with dry methanol. After reducing the volume of the reaction solution, the product was precipitated with petroleum ether. The dark coloured impurity in the product was removed by passing a solution of the product in toluene through a short column of Merck type 9385.1000 silica gel 60. The product was obtained as a white solid, mp>162 C. from toluene. [00244] The presence of borane methyl sulfide complex in these reactions does not stop the reaction from progressing. It can retard rate of the reaction somewhat but indications are that it can retard, especially with certain substrate, the dehalogenation reaction to a greater extent than the boronation reaction and so lead to an increase in product yield. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
50% | With (1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride; potassium acetate; In dimethyl sulfoxide; at 100℃; for 4h;Inert atmosphere; | To a stirred solution of CI (300 mg, 1.14 mmol) in DMSO (15 mL) under inert atmosphere were added bis(pinacalato)diboron (321 mg, 1.26 mmol) and fused potassium acetate (338 mg, 3.44 mmol) at RT. The reaction was purged with argon for 30 min. Then Pd(dppf)2Cl2 (84 mg, 0.11 mmol) was added to the reaction mixture and the reaction was heated to 100 C and stirred for 4 h. After complete consumption of the starting material, the reaction mass was cooled to RT, was diluted with water (20 mL), and was extracted with EtOAc (2x20 mL). The combined organic extracts were washed with water (20 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure to obtain the crude. The crude was purified by silica gel column chromatography (5% MeOH/CH2Cl2) to afford CJ (150 mg, 50%) as a brown solid. *H NMR (500 MHz, CDC13): delta 7.76 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.17 (br s, 1H), 2.18 (s, 3H), 1.33 (s, 12H). MS (ESI): m/z 262 [M+l]+ |
A963960 [385425-15-0]
1-(4-Iodophenyl)piperidin-2-one
Similarity: 0.80
A316261 [2050-85-3]
N,N'-(1,2-Phenylene)diacetamide
Similarity: 0.74
A178285 [927870-76-6]
5-Iodo-6-methylpyridin-2(1H)-one
Similarity: 0.83
A963960 [385425-15-0]
1-(4-Iodophenyl)piperidin-2-one
Similarity: 0.80
A316261 [2050-85-3]
N,N'-(1,2-Phenylene)diacetamide
Similarity: 0.74
A102201 [1173707-01-1]
N-(5-Fluoro-2-iodophenyl)acetamide
Similarity: 0.74
A316261 [2050-85-3]
N,N'-(1,2-Phenylene)diacetamide
Similarity: 0.74
A102201 [1173707-01-1]
N-(5-Fluoro-2-iodophenyl)acetamide
Similarity: 0.74