Home Cart 0 Sign in  
X

[ CAS No. 652-39-1 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 652-39-1
Chemical Structure| 652-39-1
Chemical Structure| 652-39-1
Structure of 652-39-1 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 652-39-1 ]

Related Doc. of [ 652-39-1 ]

Alternatived Products of [ 652-39-1 ]
Product Citations

Product Details of [ 652-39-1 ]

CAS No. :652-39-1 MDL No. :MFCD00039696
Formula : C8H3FO3 Boiling Point : -
Linear Structure Formula :- InChI Key :WWJAZKZLSDRAIV-UHFFFAOYSA-N
M.W : 166.11 Pubchem ID :69551
Synonyms :

Calculated chemistry of [ 652-39-1 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 12
Num. arom. heavy atoms : 6
Fraction Csp3 : 0.0
Num. rotatable bonds : 0
Num. H-bond acceptors : 4.0
Num. H-bond donors : 0.0
Molar Refractivity : 36.15
TPSA : 43.37 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.33 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.03
Log Po/w (XLOGP3) : 1.39
Log Po/w (WLOGP) : 1.56
Log Po/w (MLOGP) : 2.08
Log Po/w (SILICOS-IT) : 2.25
Consensus Log Po/w : 1.66

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -2.12
Solubility : 1.27 mg/ml ; 0.00766 mol/l
Class : Soluble
Log S (Ali) : -1.9
Solubility : 2.07 mg/ml ; 0.0125 mol/l
Class : Very soluble
Log S (SILICOS-IT) : -2.74
Solubility : 0.304 mg/ml ; 0.00183 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 2.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.77

Safety of [ 652-39-1 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P261-P305+P351+P338 UN#:N/A
Hazard Statements:H302-H315-H319-H335 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 652-39-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 652-39-1 ]
  • Downstream synthetic route of [ 652-39-1 ]

[ 652-39-1 ] Synthesis Path-Upstream   1~9

  • 1
  • [ 641-70-3 ]
  • [ 652-39-1 ]
Reference: [1] Synthetic Communications, 1985, vol. 15, # 6, p. 485 - 490
[2] Patent: CN108558804, 2018, A, . Location in patent: Paragraph 0016; 0023; 0024; 0025
  • 2
  • [ 1583-67-1 ]
  • [ 652-39-1 ]
Reference: [1] Organic Letters, 2010, vol. 12, # 21, p. 4796 - 4799
[2] Bioorganic and Medicinal Chemistry Letters, 2006, vol. 16, # 5, p. 1388 - 1391
[3] Journal of the American Chemical Society, 1990, vol. 112, # 7, p. 2577 - 2581
[4] Patent: WO2018/189554, 2018, A1, . Location in patent: Page/Page column 17
[5] Tetrahedron, 1998, vol. 54, # 26, p. 7485 - 7496
[6] Canadian Journal of Chemistry, 1980, vol. 58, p. 2484 - 2490
[7] Journal of Organic Chemistry, 1987, vol. 52, # 1, p. 129 - 134
[8] Patent: US5665673, 1997, A,
[9] Patent: US6156704, 2000, A,
[10] Patent: US5665674, 1997, A,
[11] Patent: WO2015/160845, 2015, A2, . Location in patent: Page/Page column 108
  • 3
  • [ 117-21-5 ]
  • [ 652-39-1 ]
Reference: [1] Patent: US4343951, 1982, A,
  • 4
  • [ 24564-71-4 ]
  • [ 652-39-1 ]
Reference: [1] Journal of Fluorine Chemistry, 1990, vol. 50, # 2, p. 251 - 255
[2] Journal of Fluorine Chemistry, 1990, vol. 50, # 2, p. 251 - 255
  • 5
  • [ 443-82-3 ]
  • [ 652-39-1 ]
Reference: [1] Tetrahedron, 1998, vol. 54, # 26, p. 7485 - 7496
[2] Journal of Organic Chemistry, 1987, vol. 52, # 1, p. 129 - 134
  • 6
  • [ 603-11-2 ]
  • [ 652-39-1 ]
Reference: [1] Synthetic Communications, 1985, vol. 15, # 6, p. 485 - 490
[2] Patent: CN108558804, 2018, A,
  • 7
  • [ 652-39-1 ]
  • [ 2211-82-7 ]
  • [ 2211-81-6 ]
  • [ 1583-67-1 ]
Reference: [1] Canadian Journal of Chemistry, 1980, vol. 58, p. 2484 - 2490
[2] Canadian Journal of Chemistry, 1980, vol. 58, p. 2484 - 2490
  • 8
  • [ 652-39-1 ]
  • [ 825-22-9 ]
  • [ 434-76-4 ]
Reference: [1] Synthetic Communications, 1985, vol. 15, # 6, p. 485 - 490
  • 9
  • [ 652-39-1 ]
  • [ 825-22-9 ]
  • [ 434-76-4 ]
Reference: [1] Synthetic Communications, 1985, vol. 15, # 6, p. 485 - 490
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Additions of Organometallic Reagents • Acetal Formation • Acid-Catalyzed α -Halogenation of Ketones • Acids Combine with Acyl Halides to Produce Anhydrides • Acyl Group Substitution • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Alcohols Convert Acyl Chlorides into Esters • Alcoholysis of Anhydrides • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldehydes May Made by Terminal Alkynes Though Hydroboration-oxidation • Aldol Addition • Aldol Condensation • Alkenes React with Ozone to Produce Carbonyl Compounds • Alkyl Halide Occurrence • Alkylation of Aldehydes or Ketones • Alkylation of Enolate Ions • Amines Convert Esters into Amides • An Alkane are Prepared from an Haloalkane • Anhydride Hydrolysis • Baeyer-Villiger Oxidation • Barbier Coupling Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Baylis-Hillman Reaction • Bouveault-Blanc Reduction • Bucherer-Bergs Reaction • Catalytic Hydrogenation • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Clemmensen Reduction • Complex Metal Hydride Reductions • Conjugated Enone Takes Part in 1,4-Additions • Convert Esters into Aldehydes Using a Milder Reducing Agent • Corey-Bakshi-Shibata (CBS) Reduction • Corey-Chaykovsky Reaction • Cyanohydrins can be Convert to Carbonyl Compounds under Basic Conditions • Decarboxylation of 3-Ketoacids Yields Ketones • Decarboxylation of Substituted Propanedioic • Deoxygenation of the Carbonyl Group • Deprotection of Cbz-Amino Acids • Deprotonation of a Carbonyl Compound at the α -Carbon • Diorganocuprates Convert Acyl Chlorides into Ketones • Dithioacetal Formation • Enamines Can Be Used to Prepare Alkylated Aldehydes • Enol-Keto Equilibration • Enolate Ions Are Protonated to Form ketones • Ester Cleavage • Ester Hydrolysis • Exclusive 1,4-Addition of a Lithium Organocuprate • Fischer Indole Synthesis • Friedel-Crafts Alkylation of Benzene with Carboxylic Anhydrides • Friedel-Crafts Alkylation of Benzene with Haloalkanes • Furan Hydrolyzes to Dicarbonyl Compounds • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • Grignard Reaction • Grignard Reagents Transform Esters into Alcohols • Hantzsch Pyridine Synthesis • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • Henry Nitroaldol Reaction • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Horner-Wadsworth-Emmons Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydrogenation by Palladium on Carbon Gives the Saturated Carbonyl Compound • Hydrolysis of Imines to Aldehydes and Ketones • Imine Formation from Amines and Aldehydes or Ketones • Isomerization of β, γ -Unsaturated Carbonyl Compounds • Ketone Synthesis from Nitriles • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Lawesson's Reagent • Leuckart-Wallach Reaction • Lithium Organocuprate may Add to the α ,β -Unsaturated Carbonyl Function in 1,4-Fashion • Mannich Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Mercury Ions Catalyze Alkynes to Ketones • Michael Addition • Oxidation of Alcohols to Carbonyl Compounds • Oxidation of Alkyl-substituted Benzenes Gives Aromatic Ketones • Passerini Reaction • Paternò-Büchi Reaction • Petasis Reaction • Peterson Olefination • Phenylhydrazone and Phenylosazone Formation • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Amines • Prins Reaction • Pyrroles, Furans, and Thiophenes are Prepared from γ-Dicarbonyl Compounds • Reactions of Aldehydes and Ketones • Reactions of Amines • Reactions with Organometallic Reagents • Reduction of an Ester to an Alcohol • Reduction of an Ester to an Aldehyde • Reductive Amination • Reductive Amination • Reformatsky Reaction • Robinson Annulation • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Specialized Acylation Reagents-Carbodiimides and Related Reagents • Specialized Acylation Reagents-Ketenes • Stobbe Condensation • Strecker Synthesis • Tebbe Olefination • The Acylium Ion Attack Benzene to Form Phenyl Ketones • The Claisen Rearrangement • The Cycloaddition of Dienes to Alkenes Gives Cyclohexenes • The Reaction of Alkynyl Anions with Carbonyl Derivatives • The Wittig Reaction • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Transesterification • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Wittig Reaction • Wolff-Kishner Reduction
Historical Records

Related Functional Groups of
[ 652-39-1 ]

Fluorinated Building Blocks

Chemical Structure| 708-25-8

[ 708-25-8 ]

Ethyl 2,5-difluorobenzoate

Similarity: 0.96

Chemical Structure| 108928-00-3

[ 108928-00-3 ]

Ethyl 2,4-difluorobenzoate

Similarity: 0.95

Chemical Structure| 1640117-38-9

[ 1640117-38-9 ]

Ethyl 3-fluoro-4-formylbenzoate

Similarity: 0.93

Chemical Structure| 197516-57-7

[ 197516-57-7 ]

Methyl 2-fluoro-6-methylbenzoate

Similarity: 0.93

Chemical Structure| 114312-57-1

[ 114312-57-1 ]

Ethyl 3-fluoro-2-methylbenzoate

Similarity: 0.93

Acid Anhydrides

Chemical Structure| 25569-77-1

[ 25569-77-1 ]

4-Fluorobenzoic anhydride

Similarity: 0.89

Chemical Structure| 18959-30-3

[ 18959-30-3 ]

4,5-Difluorophthalic Anhydride

Similarity: 0.86

Chemical Structure| 13222-85-0

[ 13222-85-0 ]

4-Methylbenzoic anhydride

Similarity: 0.71

Chemical Structure| 93-97-0

[ 93-97-0 ]

Benzoic anhydride

Similarity: 0.71

Chemical Structure| 36122-35-7

[ 36122-35-7 ]

3-Phenylfuran-2,5-dione

Similarity: 0.67

Esters

Chemical Structure| 708-25-8

[ 708-25-8 ]

Ethyl 2,5-difluorobenzoate

Similarity: 0.96

Chemical Structure| 108928-00-3

[ 108928-00-3 ]

Ethyl 2,4-difluorobenzoate

Similarity: 0.95

Chemical Structure| 1640117-38-9

[ 1640117-38-9 ]

Ethyl 3-fluoro-4-formylbenzoate

Similarity: 0.93

Chemical Structure| 197516-57-7

[ 197516-57-7 ]

Methyl 2-fluoro-6-methylbenzoate

Similarity: 0.93

Chemical Structure| 114312-57-1

[ 114312-57-1 ]

Ethyl 3-fluoro-2-methylbenzoate

Similarity: 0.93

Related Parent Nucleus of
[ 652-39-1 ]

Benzofurans

Chemical Structure| 18959-30-3

[ 18959-30-3 ]

4,5-Difluorophthalic Anhydride

Similarity: 0.86

Chemical Structure| 23932-84-5

[ 23932-84-5 ]

6-Fluoroisobenzofuran-1(3H)-one

Similarity: 0.82

Chemical Structure| 700-85-6

[ 700-85-6 ]

5-Fluoroisobenzofuran-1(3H)-one

Similarity: 0.82

Chemical Structure| 1255208-34-4

[ 1255208-34-4 ]

5-Bromo-7-fluoroisobenzofuran-1(3H)-one

Similarity: 0.81

Chemical Structure| 72985-23-0

[ 72985-23-0 ]

6-Methylisobenzofuran-1(3H)-one

Similarity: 0.71

; ;