*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
Boc-Ala-OH is an alanine derivative with a protecting group, commonly used in peptide synthesis and protein engineering.
Synonyms: Boc-L-Ala-OH; Boc-Ala-OH
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 15761-38-3 |
Formula : | C8H15NO4 |
M.W : | 189.21 |
SMILES Code : | C[C@H](NC(OC(C)(C)C)=O)C(O)=O |
Synonyms : |
Boc-L-Ala-OH; Boc-Ala-OH
|
MDL No. : | MFCD00037225 |
InChI Key : | QVHJQCGUWFKTSE-YFKPBYRVSA-N |
Pubchem ID : | 85082 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
79% | With dicyclohexyl-carbodiimide; In dichloromethane; at 0 - 20℃; for 8.5h; | {1-[4-Bromo-2-(2-fluoro-benzoyl)-phenylcarbamoyl]-ethyl}-carbamic acid tert-butyl ester 116.; To a stirred solution of <strong>[1479-58-9](2-amino-5-bromophenyl)-(2-fluoro-phenyl)-methanone</strong> (60 g, 204 mmol) 115 and the N-Boc-L-alanine 107 (38.59 g, 204 mmol) in CH2Cl2 (500 mL) was added dicyclohexylcarbodiimide (DCC) (42.09 g, 204 mmol) in CH2Cl2 (200 mL) dropwise, over a 30 min period at 0° C. The reaction mixture was allowed to stir an additional 8 h at rt. The dicyclohexyl urea which formed was filtered off and the filtrate concentrated under reduced pressure. The crude solid residue 116 was purified by recrystallization from hexane and EtOAc to afford 116 (74.9 g, 79percent). mp 158-159° C.; IR (KBr, cm-1) 3332, 2931, 255, 1694, 1643, 1613, 1582, 1537, 1450; 1H NMR (CDCl3) delta 11.68 (s, 1H), 8.71 (d, J=9.0 Hz, 1H), 7.69 (dd, J=9.0, 2.3 Hz, 1H), 7.55-7.62 (m, 2H), 7.46 (td, J=7.6, 1.4 Hz, 1H), 7.30 (t, J=7.5 Hz, 1H), 7.21 (t, J=9.1 Hz, 1H), 5.13 (b, 1H), 4.37 (b, 1H), 1.51 (d, J=7.2 Hz, 3H), 1.45 (S, 9H). MS (EI) m/e (relative intensity) 467 (M++2, 14), 466 (M++1, 44), 465 (M+, 14), 464 (42), 329 (15), 321 (60), 295 (100), 224 (26); [alpha]26D=-59.1 (c 0.51, EtOAc). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With lyophilized cells of Bacillus amyloliquefaciens WZZ002; In aq. phosphate buffer; at 35℃; for 10h;pH 8.0;Enzymatic reaction;Kinetics; | Enantioselective hydrolysis was performed on Boc-dl-Ala-OMe by adding both a substrate with a concentration range of 0.1 to 4.0M and a 500mg lyophilized cell of B. amyloliquefaciens WZZ002 in a 10mL (50mL flask) phosphate buffer solution (0.2M, pH6.0-12.0) at 20C to 60C. The solution was stirred at 400rpm. The pH level was controlled through automatic titration using different alkali solutions (2M). The samples were withdrawn at regular intervals and were immediately acidified with HCl (2M) to stop the reaction and to enhance the extractability of Boc-dl-Ala. The sample was extracted using ethyl acetate, whereas the organic phase was isolated and dried using anhydrous Na2SO4 for gas chromatography (GC) analysis. All experiments were conducted in triplicate, unless specified. The time course of enantioselective hydrolysis reaction was performed by adding 2M of Boc-dl-Ala-OMe and 5g of the lyophilized cell of B. amyloliquefaciens WZZ002 in 100mL (250mL flask) phosphate buffer solution (0.2M, pH8.0). The pH of the reaction was controlled through automatic titration using 6M of NH3·H2O to reduce the increasing amount of the neutralizer. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
(S)-Methyl 3-(2-((tert-butoxycarbonyl)amino)propanamido)-4-fluorobenzoate (I-60)Iso-Butyl chloroformate (5.3 mmol) was added to a solution of A/-(fert-butoxycarbonyl)-L-alanine (5.0 mmol) and N-methylmorpholine (5.3 mmol) in THF (25 mL) at 0 °C. After stirring for 30 min, <strong>[369-26-6]methyl 3-amino-4-fluorobenzoate</strong> (5.3 mmol) was added as a solid and the resulting mixture was stirred for 16 hrs at room temperature. After removal of the solvent (aspirator), the residue was dissolved in EtOAc (50 mL) and washed with NaHCO3 (sat., 50 mL), HCl (0.1 M in H2O, 50 mL) and brine (50 mL). The organics was dried (MgSO4) and concentrated (aspirator). The crude material was purified by chromatography (silica gel, 0-40percent EtOAc/hexanes) to give 1-60. 1H NMR (600 MHz, CDCl3): delta 8.96 (dd, J = 2.0, 7.6 Hz, 1 H), 8.67 (br s, 1 H), 7.83 - 7.75 (m, 1 H), 7.17 - 7.11 (m, 1 H), 4.94 (br s, 1 H), 4.36 (br s, 1 H), 3.90 (s, 3H), 1.50 - 1.43 (m, 12H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | t-Butoxy carbonyl-D-isoglutamine benzyl ester [Compound 4j (6.5 g, 19.3 mmols) was dissolved in cold trifluoroacetic acid (20 mL) and the resultant solution was stirred at room temperature for 15 minutes. Trifluoroacetic acid was then removed and the residue was triturated with Diethyl Ether (Et20) to obtainoily D-isoglutamine benzyl ester trifluoroacetate. Oily D-isoglutamine benzyl ester trifluoroacetate was dried over Sodium hydroxide (NaOH) pellets and dissolved in THF. Separately, t-butoxycarbonyl-L-alanine (4.012 g, 21.23mmols) was kept in dryTHF. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI for an amount of4.46 g, 23.36mmols) and Hydroxy benzotriazole (HOBt for an amount of 3.57 g,23.36mmols) were added to t-butoxycarbonyl-L-alanine (4.012 g, 21.23mmols) indry THF and stirred at Room Temperature (RT) for 30 mins. To this solution, Disoglutamine benzyl ester trifluoroacetate (dissolved in THF) was added followed by N, N-Diisopropylethylamine (DIPEA for an amount of 7.06m1, 40.53mmols). The reaction was stirred at RT for 15 hrs, the solution was then concentrated and the residue extracted with EtOAc (500m1). The EtOAc layer was washedsuccessively with 5% Sodium Bicarbonate (NaHCO3), 10% citric acid, and water (200m1 x 3), then dried over Na2504 and evaporated to obtain a residue. The residue was triturated with petroleum ether to form crystals which were recrystallized from EtOAc-petroleum ether to yield compound 5 (6.37 g, 81%) as a white solid with the following NMR characteristics. ?H-NMR (300 MHz, CDC13) : 7.39-7.29 (m, 5H), 5.82 (s, 1H), 5.13- 5.10(m,1H), 4.07 (m, 1H), 2.60-2.42 (m, 2H), 2.27-1.97 (m, 2H), 1.32 (d, 3H)Mass for C15H21N304: m/z Calculated 307, found 308 [M + Hjt | |
81% | Separately, t-butoxycarbonyl-L-alanine (4.012 g, 21.23 mmols) was kept in dry THF. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI for an amount of 4.46 g, 23.36 mmols) and Hydroxy benzotriazole (HOBt for an amount of 3.57 g, 23.36 mmols) were added to t-butoxycarbonyl-L-alanine (4.012 g, 21.23 mmols) in dry THF and stirred at Room Temperature (RT) for 30 mins. To this solution, D-isoglutamine benzyl ester trifluoroacetate (dissolved in THF) was added followed by N, N-Diisopropylethylamine (DIPEA for an amount of 7.06 ml, 40.53 mmols). The reaction was stirred at RT for 15 hrs, the solution was then concentrated and the residue extracted with EtOAc (500 ml). The EtOAc layer was washed successively with 5% Sodium Bicarbonate (NaHCO3), 10% citric acid, and water (200 ml*3), then dried over Na2SO4 and evaporated to obtain a residue. The residue was triturated with petroleum ether to form crystals which were recrystallized from EtOAc-petroleum ether to yield compound 5 (6.37 g, 81%) as a white solid with the following NMR characteristics. 1H-NMR (300 MHz, CDCl3): delta 7.39-7.29 (m, 5H), 5.82 (s, 1H), 5.13-5.10 (m, 1H), 4.07 (m, 1H), 2.60-2.42 (m, 2H), 2.27-1.97 (m, 2H), 1.32 (d, 3H); Mass for C15H21N3O4: m/z Calculated 307. found 308 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
10.2% | The titled peptide was synthesized on a model 430A peptide synthesizer (Applied Rio systems, Foster City, Calif., U.S.A.) which was modified to do accelerated Hoc-chemistry solid phase peptide synthesis (Schnolzer, M. et al., mt. J Peptide Protein Res., (1992), 40:180). 4-Methylbenzhydry- lamine (MHHA) resin (Peninsula, Helmont, Calif., U.S.A.), with a substitution of0.91 mmol/g was used. Hoc amino acids (Midwest Hio-Tech, Fishers, Ind., U.S.A.; Novabiochem., San Diego, Calif., U.S.A.) were used with the following side chain protection: Hoc-Ala-OH, Hoc-Arg(Tos)-OH, Hoc-His (DNP)-OH, Hoc-Val-OH, Hoc-Ecu-OH, Hoc-Gly-OH, HocGln-OH, Hoc-Eys(2C1Z)?--OH, Hoc-Ser(Hzl)-OH, Hoc-PheOH, Hoc-Glu(OcHex)-OH and Hoc-Pro-OH. Fmoc-Glu (OtHu)-OH (Novabiochem, San Diego, Calif., U.S.A.) was used for the residue at the 3rd position in the sequence. The synthesis was carried out on a 0.25 mmol scale. The Hoc groups were removed by two treatments with 100percent TFA each lasting one minute. Hoc amino acids (2.5 mmol) were preactivated with HH11J (2.0 mmol) and DIEA (1.0 mE) in 4 mE of DMF and were coupled without prior neutralization of the peptide-resin TFA salt. Coupling times were 5 minutes. At the end of the assembly of the first 25 residues on theAHI 430A® peptide synthesizer and before the coupling of Fmoc-Glu (OtHu)-OH, the protected peptide-resin was transferred into a reaction vessel on a shaker for manual synthesis. After removing the Hoc protecting group with two, one-minute treatments with 100percent TFA and a washing with DMF, the resin was mixed with Fmoc-Glu(OtHu)-OH (2.5 mmol) which was preactivated with HHTU (2.0 mmol), HOHt (2.0 mmol) and DIEA (1.0 mE) in 4 mE of DMF. The mixture was shaken for 2 hours. This coupling step was repeated. After washing with DMF, the resin was treated with a TFA solution containing 5percent water and 5percent TIS for 2 hours to remove the tHu protecting group in the side chain of the Glu residue. The resin was neutralized with 10percent DIEA in DMF and washed with DMF and DCM. The resin was then treated twice with hexylamine (2.0 mmol), DIC (2.0 mmol), HOHt (2.0 mmol) in 5 ml of DCM for two hours per treatment. The resin was washed with DMF and treated with 25percent piperidine in DMF for 30 minutes to remove the Fmoc protecting group. Afier washing with DMF and DCM, the resin was transferred into the reaction vessel on the AHI 430A peptide synthesizer for the assembly of the rest two residues. At the end of the assembly of the whole peptide chain, the resin was treated with a solution of 20percent mercaptoethanol/10percent DIEA in DMF for 2x30 mm to remove the DNP group on the His side chain. The N-terminal Hoc group was then removed by two treatments of 100percent TFA for 2 minutes. The peptide-resin was washed with DMF and DCM and dried under reduced pressure. The final cleavage was done by stirring the peptide-resin in 10 mE of HF containing 1 mE of anisole and dithiothreitol (50 mg) at 0° C. for 75 minutes. HF was removed by a flow of nitrogen. The residue was washed with ether (6x 10 mE) and extracted with 4N HOAc (6x10 mE). This crude product was purified on a reverse-phase preparative HPEC using a colunm (4x43 cm) of C18 DYNAMAX-100A°® (Varian, Walnut Creek, Calif., U.S.A.). The column was eluted with a linear gradient from 75percentAand25percent B to 55percentAand45percent B at flow rate of 10 mE/mm in an hour where A was 0.1percent TFA in water and B was 0.1percent TFA in acetonitrile. Fractions were collected and checked on an analytical HPEC. Those containing pure product were combined and lyophilized to dryness. 31.8 mg of a white solid was obtained. Purity was 89percent based on analytical HPEC analysis. Electro-spray ionization mass spectrometry (ESI MS) analysis gave the molecular weight at 3368.4 (in agreement with the calculated molecular weight of 3368.9). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.5 mg | General procedure: The first four amino acids (from the C-terminus) of peptide 13 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used: The remaining two amino acids of peptide 13 were coupled manually using a 5-fold molar excess of amino acid, FIOBt and DIC (75 pmol each) in DMF as solvent. In addition, the whole sequence of peptide 15 was prepared by manual synthesis on a Rink amide AM resin using the same reagent conditions. Following coupling scheme was applied: In case of peptide 15, the resin was treated with a capping solution of 10 % DIPEA and 10 % acetic anhydride in DCM (15 min, 500 pi) after loading with the first C-terminal amino acid. Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). Peptides 14 and 16 were entirely prepared by automated peptide synthesis as described in the general section. The coupling scheme was as follows: The first two C-terminal amino acids of peptide 17 and 18 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used:The remaining three amino acids of peptide 17 and 18 were coupled manually using a 3-fold or 5- fold molar excess of the amino acid and a 5-fold molar excess of FIOBt and DIC (75 pmol each) in DMF as solvent. The coupling scheme was as follows: Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 pi each). For the removal of the Mmt protecting group in peptide 13, the resin was treated with a cleavage mixture consisting of 2 % TFA, 5 % TIS in DCM (8 x 2 min, 1 ml each). After each deprotection step, the resin was washed with DCM. Finally, the resin was incubated with 5 % DIPEA in DCM (2 x 10 min, 1 ml each). For the cleavage of the Dde protecting group in all other peptides (14-18), the resin was treated with 2 % hydrazine in DMF (10 x 10 min, 1 ml each). In case of peptide 14, the building block Fmoc-L-Dap(Mtt)-OFI was coupled manually in 3-fold molar excess with a 5-fold molar excess of FIOBt and DIC (75 pmol each) to the e-amino group of the C- terminal lysine. DMF was used as solvent and the coupling time was approximately 16 h. For peptide 16, the building block Fmoc-L-Dap(Fmoc)-OFI was coupled manually in 5-fold molar excess with FIOBt and DIC (75 pmol each) in DMF to the C-terminal lysine side-chain. The coupling time was 4 h. Subsequently, removal of the Fmoc protecting groups was achieved by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). 6-TAMRA was coupled manually to peptide 16 using a 2-fold molar excess of the fluorophore, FIATU and DIPEA (30 pmol each) in DMF as solvent for 5 h. Afterwards, removal of the Mtt protecting group in peptide 16 was performed as described for the Mmt deprotection above.The carbaboranes were coupled manually in 3-fold molar excess per free lysine or Dap amino group, except for mlJ9b, which was coupled in 1.5-fold molar excess per free amino group. Coupling reactions were prepared as follows: Peptides 13, 14 and 17: 3 eq. m9b, 5 eq. FIOBt and 5 eq. DIC in DMF as solvent. Peptide 15: 3 eq. bm9x, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 16: 3 eq. mlJ9b, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 18: 1.5 eq. mlJ9b, 2 eq. FIOBt and 2 eq. DIC in DMF. All coupling reactions were performed overnight for approximately 16 h. Cleavage of conjugates 13-15 and 17 from the resin and simultaneous side chain deprotection was accomplished using a mixture of TFA/TA/EDT (90:7:3, 1 ml) for 3 h. Cleavage of conjugates 16 and 18 from the resin was achieved using a mixture of TFA/FhO (95:5, 1 ml) for 3 h. The crude conjugates were precipitated and washed with an ice-cold mixture of hexane/diethyl ether (3:1, v/v), dissolved in ACN/FI2O and subsequently lyophilized. The first purification of the crude conjugate 13 was performed by preparative RP-HPLC using a C18- column (Phenomenex Jupiter 5u 300 A: 250 mm c 21.2 mm, 5 pm, 300 A) with a flow rate of 10 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. Conjugate 13 had to be purified a second time using a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. For purification of conjugate 14, a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 30 % to 60 % eluent B in A over 30 min was applied. Purification of the conjugates 15-17 was achieved using a Kinetex C18-column (Phenomenex Kinetex 5u XB-C18: 250 mm c 21.2 mm, 5 pm, 100 A) with a flow rate of 15 ml/min. For conjugate 15 and 16, a linear gradient of 40 % to 70 % eluent B in A over 30 min was used, whereas for conjugate 17 a gradient of 50 % to 80 % eluent B in A over 30 min was applied. Purification of the... |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
9.7 mg | General procedure: The first four amino acids (from the C-terminus) of peptide 13 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used: The remaining two amino acids of peptide 13 were coupled manually using a 5-fold molar excess of amino acid, FIOBt and DIC (75 pmol each) in DMF as solvent. In addition, the whole sequence of peptide 15 was prepared by manual synthesis on a Rink amide AM resin using the same reagent conditions. Following coupling scheme was applied: In case of peptide 15, the resin was treated with a capping solution of 10 % DIPEA and 10 % acetic anhydride in DCM (15 min, 500 pi) after loading with the first C-terminal amino acid. Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). Peptides 14 and 16 were entirely prepared by automated peptide synthesis as described in the general section. The coupling scheme was as follows: The first two C-terminal amino acids of peptide 17 and 18 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used:The remaining three amino acids of peptide 17 and 18 were coupled manually using a 3-fold or 5- fold molar excess of the amino acid and a 5-fold molar excess of FIOBt and DIC (75 pmol each) in DMF as solvent. The coupling scheme was as follows: Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 pi each). For the removal of the Mmt protecting group in peptide 13, the resin was treated with a cleavage mixture consisting of 2 % TFA, 5 % TIS in DCM (8 x 2 min, 1 ml each). After each deprotection step, the resin was washed with DCM. Finally, the resin was incubated with 5 % DIPEA in DCM (2 x 10 min, 1 ml each). For the cleavage of the Dde protecting group in all other peptides (14-18), the resin was treated with 2 % hydrazine in DMF (10 x 10 min, 1 ml each). In case of peptide 14, the building block Fmoc-L-Dap(Mtt)-OFI was coupled manually in 3-fold molar excess with a 5-fold molar excess of FIOBt and DIC (75 pmol each) to the e-amino group of the C- terminal lysine. DMF was used as solvent and the coupling time was approximately 16 h. For peptide 16, the building block Fmoc-L-Dap(Fmoc)-OFI was coupled manually in 5-fold molar excess with FIOBt and DIC (75 pmol each) in DMF to the C-terminal lysine side-chain. The coupling time was 4 h. Subsequently, removal of the Fmoc protecting groups was achieved by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). 6-TAMRA was coupled manually to peptide 16 using a 2-fold molar excess of the fluorophore, FIATU and DIPEA (30 pmol each) in DMF as solvent for 5 h. Afterwards, removal of the Mtt protecting group in peptide 16 was performed as described for the Mmt deprotection above.The carbaboranes were coupled manually in 3-fold molar excess per free lysine or Dap amino group, except for mlJ9b, which was coupled in 1.5-fold molar excess per free amino group. Coupling reactions were prepared as follows: Peptides 13, 14 and 17: 3 eq. m9b, 5 eq. FIOBt and 5 eq. DIC in DMF as solvent. Peptide 15: 3 eq. bm9x, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 16: 3 eq. mlJ9b, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 18: 1.5 eq. mlJ9b, 2 eq. FIOBt and 2 eq. DIC in DMF. All coupling reactions were performed overnight for approximately 16 h. Cleavage of conjugates 13-15 and 17 from the resin and simultaneous side chain deprotection was accomplished using a mixture of TFA/TA/EDT (90:7:3, 1 ml) for 3 h. Cleavage of conjugates 16 and 18 from the resin was achieved using a mixture of TFA/FhO (95:5, 1 ml) for 3 h. The crude conjugates were precipitated and washed with an ice-cold mixture of hexane/diethyl ether (3:1, v/v), dissolved in ACN/FI2O and subsequently lyophilized. The first purification of the crude conjugate 13 was performed by preparative RP-HPLC using a C18- column (Phenomenex Jupiter 5u 300 A: 250 mm c 21.2 mm, 5 pm, 300 A) with a flow rate of 10 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. Conjugate 13 had to be purified a second time using a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. For purification of conjugate 14, a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 30 % to 60 % eluent B in A over 30 min was applied. Purification of the conjugates 15-17 was achieved using a Kinetex C18-column (Phenomenex Kinetex 5u XB-C18: 250 mm c 21.2 mm, 5 pm, 100 A) with a flow rate of 15 ml/min. For conjugate 15 and 16, a linear gradient of 40 % to 70 % eluent B in A over 30 min was used, whereas for conjugate 17 a gradient of 50 % to 80 % eluent B in A over 30 min was applied. Purification of the... |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
5.8 mg | General procedure: The first four amino acids (from the C-terminus) of peptide 13 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used: The remaining two amino acids of peptide 13 were coupled manually using a 5-fold molar excess of amino acid, FIOBt and DIC (75 pmol each) in DMF as solvent. In addition, the whole sequence of peptide 15 was prepared by manual synthesis on a Rink amide AM resin using the same reagent conditions. Following coupling scheme was applied: In case of peptide 15, the resin was treated with a capping solution of 10 % DIPEA and 10 % acetic anhydride in DCM (15 min, 500 pi) after loading with the first C-terminal amino acid. Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). Peptides 14 and 16 were entirely prepared by automated peptide synthesis as described in the general section. The coupling scheme was as follows: The first two C-terminal amino acids of peptide 17 and 18 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used:The remaining three amino acids of peptide 17 and 18 were coupled manually using a 3-fold or 5- fold molar excess of the amino acid and a 5-fold molar excess of FIOBt and DIC (75 pmol each) in DMF as solvent. The coupling scheme was as follows: Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 pi each). For the removal of the Mmt protecting group in peptide 13, the resin was treated with a cleavage mixture consisting of 2 % TFA, 5 % TIS in DCM (8 x 2 min, 1 ml each). After each deprotection step, the resin was washed with DCM. Finally, the resin was incubated with 5 % DIPEA in DCM (2 x 10 min, 1 ml each). For the cleavage of the Dde protecting group in all other peptides (14-18), the resin was treated with 2 % hydrazine in DMF (10 x 10 min, 1 ml each). In case of peptide 14, the building block Fmoc-L-Dap(Mtt)-OFI was coupled manually in 3-fold molar excess with a 5-fold molar excess of FIOBt and DIC (75 pmol each) to the e-amino group of the C- terminal lysine. DMF was used as solvent and the coupling time was approximately 16 h. For peptide 16, the building block Fmoc-L-Dap(Fmoc)-OFI was coupled manually in 5-fold molar excess with FIOBt and DIC (75 pmol each) in DMF to the C-terminal lysine side-chain. The coupling time was 4 h. Subsequently, removal of the Fmoc protecting groups was achieved by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). 6-TAMRA was coupled manually to peptide 16 using a 2-fold molar excess of the fluorophore, FIATU and DIPEA (30 pmol each) in DMF as solvent for 5 h. Afterwards, removal of the Mtt protecting group in peptide 16 was performed as described for the Mmt deprotection above.The carbaboranes were coupled manually in 3-fold molar excess per free lysine or Dap amino group, except for mlJ9b, which was coupled in 1.5-fold molar excess per free amino group. Coupling reactions were prepared as follows: Peptides 13, 14 and 17: 3 eq. m9b, 5 eq. FIOBt and 5 eq. DIC in DMF as solvent. Peptide 15: 3 eq. bm9x, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 16: 3 eq. mlJ9b, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 18: 1.5 eq. mlJ9b, 2 eq. FIOBt and 2 eq. DIC in DMF. All coupling reactions were performed overnight for approximately 16 h. Cleavage of conjugates 13-15 and 17 from the resin and simultaneous side chain deprotection was accomplished using a mixture of TFA/TA/EDT (90:7:3, 1 ml) for 3 h. Cleavage of conjugates 16 and 18 from the resin was achieved using a mixture of TFA/FhO (95:5, 1 ml) for 3 h. The crude conjugates were precipitated and washed with an ice-cold mixture of hexane/diethyl ether (3:1, v/v), dissolved in ACN/FI2O and subsequently lyophilized. The first purification of the crude conjugate 13 was performed by preparative RP-HPLC using a C18- column (Phenomenex Jupiter 5u 300 A: 250 mm c 21.2 mm, 5 pm, 300 A) with a flow rate of 10 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. Conjugate 13 had to be purified a second time using a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. For purification of conjugate 14, a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 30 % to 60 % eluent B in A over 30 min was applied. Purification of the conjugates 15-17 was achieved using a Kinetex C18-column (Phenomenex Kinetex 5u XB-C18: 250 mm c 21.2 mm, 5 pm, 100 A) with a flow rate of 15 ml/min. For conjugate 15 and 16, a linear gradient of 40 % to 70 % eluent B in A over 30 min was used, whereas for conjugate 17 a gradient of 50 % to 80 % eluent B in A over 30 min was applied. Purification of the... |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
5.5 mg | General procedure: The first four amino acids (from the C-terminus) of peptide 13 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used: The remaining two amino acids of peptide 13 were coupled manually using a 5-fold molar excess of amino acid, FIOBt and DIC (75 pmol each) in DMF as solvent. In addition, the whole sequence of peptide 15 was prepared by manual synthesis on a Rink amide AM resin using the same reagent conditions. Following coupling scheme was applied: In case of peptide 15, the resin was treated with a capping solution of 10 % DIPEA and 10 % acetic anhydride in DCM (15 min, 500 pi) after loading with the first C-terminal amino acid. Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). Peptides 14 and 16 were entirely prepared by automated peptide synthesis as described in the general section. The coupling scheme was as follows: The first two C-terminal amino acids of peptide 17 and 18 were coupled by automated peptide synthesis as described in the general section. Following coupling scheme was used:The remaining three amino acids of peptide 17 and 18 were coupled manually using a 3-fold or 5- fold molar excess of the amino acid and a 5-fold molar excess of FIOBt and DIC (75 pmol each) in DMF as solvent. The coupling scheme was as follows: Removal of Fmoc protecting groups after each manual coupling step was accomplished by using 20 % piperidine in DMF (2 x 10 min, 500 pi each). For the removal of the Mmt protecting group in peptide 13, the resin was treated with a cleavage mixture consisting of 2 % TFA, 5 % TIS in DCM (8 x 2 min, 1 ml each). After each deprotection step, the resin was washed with DCM. Finally, the resin was incubated with 5 % DIPEA in DCM (2 x 10 min, 1 ml each). For the cleavage of the Dde protecting group in all other peptides (14-18), the resin was treated with 2 % hydrazine in DMF (10 x 10 min, 1 ml each). In case of peptide 14, the building block Fmoc-L-Dap(Mtt)-OFI was coupled manually in 3-fold molar excess with a 5-fold molar excess of FIOBt and DIC (75 pmol each) to the e-amino group of the C- terminal lysine. DMF was used as solvent and the coupling time was approximately 16 h. For peptide 16, the building block Fmoc-L-Dap(Fmoc)-OFI was coupled manually in 5-fold molar excess with FIOBt and DIC (75 pmol each) in DMF to the C-terminal lysine side-chain. The coupling time was 4 h. Subsequently, removal of the Fmoc protecting groups was achieved by using 20 % piperidine in DMF (2 x 10 min, 500 mI each). 6-TAMRA was coupled manually to peptide 16 using a 2-fold molar excess of the fluorophore, FIATU and DIPEA (30 pmol each) in DMF as solvent for 5 h. Afterwards, removal of the Mtt protecting group in peptide 16 was performed as described for the Mmt deprotection above.The carbaboranes were coupled manually in 3-fold molar excess per free lysine or Dap amino group, except for mlJ9b, which was coupled in 1.5-fold molar excess per free amino group. Coupling reactions were prepared as follows: Peptides 13, 14 and 17: 3 eq. m9b, 5 eq. FIOBt and 5 eq. DIC in DMF as solvent. Peptide 15: 3 eq. bm9x, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 16: 3 eq. mlJ9b, 4 eq. FIOBt and 4 eq. DIC in DMF. Peptide 18: 1.5 eq. mlJ9b, 2 eq. FIOBt and 2 eq. DIC in DMF. All coupling reactions were performed overnight for approximately 16 h. Cleavage of conjugates 13-15 and 17 from the resin and simultaneous side chain deprotection was accomplished using a mixture of TFA/TA/EDT (90:7:3, 1 ml) for 3 h. Cleavage of conjugates 16 and 18 from the resin was achieved using a mixture of TFA/FhO (95:5, 1 ml) for 3 h. The crude conjugates were precipitated and washed with an ice-cold mixture of hexane/diethyl ether (3:1, v/v), dissolved in ACN/FI2O and subsequently lyophilized. The first purification of the crude conjugate 13 was performed by preparative RP-HPLC using a C18- column (Phenomenex Jupiter 5u 300 A: 250 mm c 21.2 mm, 5 pm, 300 A) with a flow rate of 10 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. Conjugate 13 had to be purified a second time using a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 50 % to 80 % eluent B in A over 30 min. For purification of conjugate 14, a XBridge C18-column (Waters XBridge Peptide BEH C18 OBD: 250 mm c 19 mm, 10 pm, 130 A) with a flow rate of 15 ml/min and a linear gradient of 30 % to 60 % eluent B in A over 30 min was applied. Purification of the conjugates 15-17 was achieved using a Kinetex C18-column (Phenomenex Kinetex 5u XB-C18: 250 mm c 21.2 mm, 5 pm, 100 A) with a flow rate of 15 ml/min. For conjugate 15 and 16, a linear gradient of 40 % to 70 % eluent B in A over 30 min was used, whereas for conjugate 17 a gradient of 50 % to 80 % eluent B in A over 30 min was applied. Purification of the... |