Home Cart Sign in  
Chemical Structure| 143824-78-6 Chemical Structure| 143824-78-6
Chemical Structure| 143824-78-6

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

Fmoc-Trp(Boc)-OH is a tryptophan derivative with self-assembling and nanoparticle-forming capabilities, useful in anticancer drug delivery research.

Synonyms: Fmoc-L-Trp(Boc)-OH

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Singh, Harminder ; Biswas, Diptomit ; Medina, Scott ;

Abstract: Implant contamination by bacterial biofilms remains a significant healthcare burden, often necessitating revision surgeries due to biofilm-enabled antibiotic resistance. Physical debridement, in combination with chemical antiseptics, is a simple and effective therapeutic strategy, but requires highly invasive surgical procedures and risks secondary infection events. Herein, we report a non-invasive, nanoparticle-enabled ultrasonic debridement strategy that exerts synergistic physical and chemical antiseptic effects to rapidly and efficiently clear implant-associated biofilms in situ. This approach is realized through the development of hydrogen sulfide- releasing peptide nanoemulsions that preferentially target bacterial biofilms and can be vaporized via diagnostic ultrasound to spatiotemporally clear methicillin-resistant Staphylococcus aureus (MRSA) infections. Biophysical studies elucidate the mechanistic basis for the platform’s antibiofilm activity, and in vitro and ex vivo experiments confirm efficacy in the context of MRSA-infected titanium implants. By exploiting the portable, low cost and safe nature of low intensity diagnostic ultrasound, this non-invasive approach avoids the collateral tissue damage associated with current surgical and high intensity acoustic ablative modalities.

Purchased from AmBeed: ;

Alternative Products

Product Details of Fmoc-Trp(Boc)-OH

CAS No. :143824-78-6
Formula : C31H30N2O6
M.W : 526.57
SMILES Code : O=C(O)[C@H](CC1=CN(C(OC(C)(C)C)=O)C2=CC=CC=C12)NC(OCC3C4=C(C5=C3C=CC=C5)C=CC=C4)=O
Synonyms :
Fmoc-L-Trp(Boc)-OH
MDL No. :MFCD00153366
InChI Key :ADOHASQZJSJZBT-SANMLTNESA-N
Pubchem ID :9849766

Safety of Fmoc-Trp(Boc)-OH

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Application In Synthesis of Fmoc-Trp(Boc)-OH

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 143824-78-6 ]

[ 143824-78-6 ] Synthesis Path-Downstream   1~36

  • 1
  • [ 811434-05-6 ]
  • [ 124-07-2 ]
  • Fmoc-Thr(Bzl)-O-HMP-resin [ No CAS ]
  • [ 86123-10-6 ]
  • [ 125238-99-5 ]
  • [ 117872-75-0 ]
  • [ 143824-78-6 ]
  • C114H134Cl5N17O24 [ No CAS ]
  • 2
  • [ 811434-05-6 ]
  • C26H24NO5Pol [ No CAS ]
  • [ 35661-60-0 ]
  • [ 86123-10-6 ]
  • [ 125238-99-5 ]
  • [ 117872-75-0 ]
  • [ 143824-78-6 ]
  • [ 1173986-45-2 ]
  • 3
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 96402-49-2 ]
  • [ 143824-78-6 ]
  • Fmoc-S-trityl penicillamine [ No CAS ]
  • C61H76N10O10S2 [ No CAS ]
  • 4
  • C27H31ClNO2Pol [ No CAS ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 86123-10-6 ]
  • [ 96402-49-2 ]
  • [ 146549-21-5 ]
  • [ 143824-78-6 ]
  • [ 1241047-38-0 ]
  • 5
  • C27H31ClNO2Pol [ No CAS ]
  • [ 71989-26-9 ]
  • [ 71989-40-7 ]
  • [ 86123-10-6 ]
  • [ 96402-49-2 ]
  • [ 146549-21-5 ]
  • [ 143824-78-6 ]
  • [ 1241047-41-5 ]
  • 6
  • [ 4497-04-5 ]
  • C42H41N4O8Pol [ No CAS ]
  • [ 143824-78-6 ]
  • [ 1241875-27-3 ]
  • 7
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • H-(propargylglycyl)-QGTFTSDYSKYLDSRRAQDFVQWLMNTKRNRNNIA-NH2 [ No CAS ]
  • 8
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 71989-14-5 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 96402-49-2 ]
  • [ 143824-78-6 ]
  • Fmoc-[β-dimethylcysteine](Trt)-OH [ No CAS ]
  • C56H72N10O11S2 [ No CAS ]
  • 9
  • [ 159610-89-6 ]
  • [ 108-24-7 ]
  • [ 86123-10-6 ]
  • [ 109425-51-6 ]
  • [ 77284-32-3 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • Ac-Nle-Pra-His-D-Phe-Arg-Trp-Nle(ε-N3)-NH2 [ No CAS ]
  • 10
  • [ 159610-89-6 ]
  • [ 108-24-7 ]
  • [ 86123-10-6 ]
  • [ 109425-51-6 ]
  • [ 77284-32-3 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • Ac-Nle-Nle(N<SUB>3</SUB>)-His-D-Phe-Arg-Trp-Pra-NH<SUB>2</SUB> [ No CAS ]
  • 11
  • C23H22NO6Pol [ No CAS ]
  • C17H35NO5Si [ No CAS ]
  • [ 35661-60-0 ]
  • [ 132327-80-1 ]
  • [ 77128-73-5 ]
  • [ 71989-33-8 ]
  • [ 56-40-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • N-FMOC-O-tert-butyl-D-threonine [ No CAS ]
  • Fmoc-D-Ile-OH [ No CAS ]
  • C75H116N20O20 [ No CAS ]
  • 12
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGA-(L-1-naphthylalanyl)-RKCIPDNDKCCRPNLVCSRTHKWCKYVF-NH2; disulfide linked (C2→C17, C9→C23, C16→C30) [ No CAS ]
  • 13
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGF-(L-1-naphthylalanyl)-RKCIPDNDKCCRPNLVCSRTHKWCKYVF-NH2; disulfide linked (C2→C17, C9→C23, C16→C30) [ No CAS ]
  • 14
  • [ 35661-60-0 ]
  • [ 35661-51-9 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 108-24-7 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • Ac-Tyr-Asn-Trp-Asn-Ser-Phe-azaGly-Leu-Arg-Tyr-NH2 [ No CAS ]
  • 15
  • fmoc-Phe-Alko Resin [ No CAS ]
  • [ 29022-11-5 ]
  • [ 143824-78-6 ]
  • [ 198561-07-8 ]
  • C42H39N5O7 [ No CAS ]
  • 16
  • H-Trp(Boc)-2-chlorotrityl chloride resin [ No CAS ]
  • [ 143824-78-6 ]
  • [ 198561-07-8 ]
  • C60H57N11O7 [ No CAS ]
  • 17
  • H-Trp(Boc)-2-chlorotrityl chloride resin [ No CAS ]
  • [ 143824-78-6 ]
  • [ 198561-07-8 ]
  • C85H97N11O17 [ No CAS ]
  • 18
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • XCLGFMRKCIPDNDKCCRPNLVCSRTHKWCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 19
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGXMRKCIPDNDKCCRPNLVCSRTHKWCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 20
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPXNDKCCRPNLVCSRTHKWCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 21
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPDXDKCCRPNLVCSRTHKWCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 22
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPDNDKCCRPXLVCSRTHKWCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 23
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPDNDKCCRPNXVCSRTHKWCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 24
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPDNDKCCRPNLVCSRTHKXCKYVF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 25
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPDNDKCCRPNLVCSRTHKWCKYXF amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 26
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 71989-28-1 ]
  • [ 132388-59-1 ]
  • [ 96402-49-2 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • DCLGFMRKCIPDNDKCCRPNLVCSRTHKWCKYVX amide; X=3-(1-naphthyl)-L-alanine [ No CAS ]
  • 27
  • [ 250695-67-1 ]
  • [ 35661-39-3 ]
  • [ 112883-29-1 ]
  • [ 71989-23-6 ]
  • [ 73731-37-0 ]
  • [ 73724-45-5 ]
  • [ 71989-31-6 ]
  • [ 125238-99-5 ]
  • [ 143824-78-6 ]
  • [ 158599-00-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • C77H118N20O19 [ No CAS ]
YieldReaction ConditionsOperation in experiment
1. Peptide synthesis 1.1 General synthetic procedures A general method for the synthesis of the peptidomimetics of the present invention is exemplified in the following. This is to demonstrate the principal concept and does not limit or restrict the present invention in any way. A person skilled in the art is easily able to modify these procedures, especially, but not limited to, choosing a different starting position within the ring system, to still achieve the preparation of the claimed cyclic peptidomimetic compounds of the present invention. Coupling of the first protected amino acid residue to the resin . In a dried flask, 2-chlorotritylchloride resin (polystyrene, 1percent crosslinked; loading: 1.4 mMol/g) was swollen in dry CH2CI2 for 30 min (7 mL CH2CI2 per g resin). A solution of 0.8 eq of the Fmoc-protected amino acid and 6 eq of DIPEA in dry CH2CI2/DMF (4/1) (10 mL per g resin) was added. After shaking for 2-4 h at rt the resin was filtered off and washed successively with CH2CI2, DMF, CH2CI2, DMF and CH2CI2. Then a solution of dry CH2CI2/MeOH/DIPEA (17:2:1) was added (10 mL per g resin). After shaking for 3 x 30 min the resin was filtered off in a pre-weighed sinter funnel and washed successively with CH2CI2, DMF, CH2CI2, MeOH, CH2CI2, MeOH, CH2CI2 (2x) and Et20 (2x). The resin was dried under high vacuum overnight. The final mass of resin was calculated before the qualitative control. Loading was typically 0.6 - 0.7 mMol/g. The following preloaded resins were prepared: Fmoc-Dab(Boc)-2-chlorotrityl resin, Fmoc-DDab(Boc)-2-chlorotrityl resin, Fmoc-Lys(Boc)-2-chlorotrityl resin, Fmoc- Trp(Boc)-2-chlortrityl resin, Fmoc-Phe-2-chlortrityl resin; Fmoc-Val-2-chlorotrityl resin, Fmoc-Pro-2-chlorotrityl resin, Fmoc-Arg(Pbf)-2-chlorotrityl resin and Fmoc-Glu(iBu)-2- chlorotrityl resin. Synthesis of the fully protected peptide fragment The synthesis was carried out on a Syro-peptide synthesizer (MultiSynTech GmbH) using 24 to 96 reaction vessels. In each vessel 0.04 mMol of the above resin were placed and the resin was swelled in CH2CI2 and DMF for 15 min, respectively. The following reaction cycles were programmed and carried out: Step Reagent Time 1 CH2CI2, wash and swell (manual) 1 x 3 min 2 DMF, wash and swell 2 x 30 min 3 20percent piperidine/DMF 1 x 5 min and 1 x 15 min 4 DMF, wash 5 x 1 min 5 3.5 eq Fmoc amino acid/3.5 eq HOAt in DMF + 3.5 eq PyBOP/7 eq DIPEA or 3.5 eq DIC 1 x 40 min 6 3.5 eq Fmoc amino acid/DMF + 3.5 eq HATU or PyBOP or HCTU + 7 eq DIPEA 1 x 40 min 7 DMF, wash 5 x 1 min 8 20percent piperidine/DMF 1 x 5 min and 1 x 15 min 9 DMF, wash 5 x 1 min 10 CH2CI2, wash (at the end of the synthesis) 3 x 1 min Steps 5 to 9 are repeated to add each amino-acid residue. After the termination of the synthesis of the fully protected peptide fragment, one of the procedures A - E, as described herein below, was adopted subsequently, depending on which kind of interstrand linkages, as described herein below, were to be formed. Finally, the peptides were purified by preparative reverse phase LC-MS, as described herein below. Procedure A: Cyclization and work up of a backbone cyclized peptide having no interstrand linkage Cleavage, backbone cyclization and deprotection After assembly of the linear peptide, the resin was suspended in 1 mL of 1percent TFA in CH2CI2 (v/v; 0.14 mMol) for 3 minutes. After filtration the filtrate was neutralized with 1 mL of 20percent DI PEA in CH2CI2 (v/v; 1.15 mMol). This procedure was repeated four times to ensure completion of the cleavage. An alternative cleavage method comprises suspension of the resin in lmL of 20percent HFIP in CH2CI2 (v/v; 1.9 mMol) for 30 minutes, filtration and repetition of the procedure. The resin was washed three times with 1 mL of CH2CI2. The CH2CI2 layers containing product were evaporated to dryness. The fully protected linear peptide was solubilised in 8 mL of dry DM F. Then 2 eq of HATU and 2 eq of HOAt in dry DM F (1-2 mL) and 4 eq of DIPEA in dry DM F (1-2 mL) were added to the peptide, followed by stirring for ca. 16 h. The volatiles were removed by evaporation. The crude cyclic peptide was dissolved in 7 mL of CH2CI2 and washed three times with 4.5 mL 10percent acetonitrile in water (v/v). The CH2CI2 layer was then evaporated to dryness. To fully deprotect the peptide, 7 mL of cleavage cocktail TFA/DODT/thioanisol/H20 (87.5 :2.5:5:5) or TFA/TIS/H20 (95:2.5 :2.5) were added, and the mixture was kept for 2.5-4 h at room temperature until the reaction was completed. The reaction mixture was evaporated close to dryness, the peptide precipitated with 7 mL of cold Et20/pentane and finally washed 3 times with 4 mL of cold Et20/pentane. Procedures Bl and B2: Cyclization and work up of a backbone cyclized peptide having a disulfide interstrand linkage Bl: Formation of a disulfide interstrand linkage using DMSO After cleavage, backbone cyclization and deprotection of the linear peptide, as described in the corresponding section of procedure A, th...
  • 28
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 402846-43-9 ]
  • [ 112883-29-1 ]
  • [ 73724-45-5 ]
  • [ 135248-89-4 ]
  • [ 125238-99-5 ]
  • [ 143824-78-6 ]
  • [ 158599-00-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • C76H115N23O19S2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
1. Peptide synthesis 1.1 General synthetic procedures A general method for the synthesis of the peptidomimetics of the present invention is exemplified in the following. This is to demonstrate the principal concept and does not limit or restrict the present invention in any way. A person skilled in the art is easily able to modify these procedures, especially, but not limited to, choosing a different starting position within the ring system, to still achieve the preparation of the claimed cyclic peptidomimetic compounds of the present invention. Coupling of the first protected amino acid residue to the resin . In a dried flask, 2-chlorotritylchloride resin (polystyrene, 1percent crosslinked; loading: 1.4 mMol/g) was swollen in dry CH2CI2 for 30 min (7 mL CH2CI2 per g resin). A solution of 0.8 eq of the Fmoc-protected amino acid and 6 eq of DIPEA in dry CH2CI2/DMF (4/1) (10 mL per g resin) was added. After shaking for 2-4 h at rt the resin was filtered off and washed successively with CH2CI2, DMF, CH2CI2, DMF and CH2CI2. Then a solution of dry CH2CI2/MeOH/DIPEA (17:2:1) was added (10 mL per g resin). After shaking for 3 x 30 min the resin was filtered off in a pre-weighed sinter funnel and washed successively with CH2CI2, DMF, CH2CI2, MeOH, CH2CI2, MeOH, CH2CI2 (2x) and Et20 (2x). The resin was dried under high vacuum overnight. The final mass of resin was calculated before the qualitative control. Loading was typically 0.6 - 0.7 mMol/g. The following preloaded resins were prepared: Fmoc-Dab(Boc)-2-chlorotrityl resin, Fmoc-DDab(Boc)-2-chlorotrityl resin, Fmoc-Lys(Boc)-2-chlorotrityl resin, Fmoc- Trp(Boc)-2-chlortrityl resin, Fmoc-Phe-2-chlortrityl resin; Fmoc-Val-2-chlorotrityl resin, Fmoc-Pro-2-chlorotrityl resin, Fmoc-Arg(Pbf)-2-chlorotrityl resin and Fmoc-Glu(iBu)-2- chlorotrityl resin. Synthesis of the fully protected peptide fragment The synthesis was carried out on a Syro-peptide synthesizer (MultiSynTech GmbH) using 24 to 96 reaction vessels. In each vessel 0.04 mMol of the above resin were placed and the resin was swelled in CH2CI2 and DMF for 15 min, respectively. The following reaction cycles were programmed and carried out: Step Reagent Time 1 CH2CI2, wash and swell (manual) 1 x 3 min 2 DMF, wash and swell 2 x 30 min 3 20percent piperidine/DMF 1 x 5 min and 1 x 15 min 4 DMF, wash 5 x 1 min 5 3.5 eq Fmoc amino acid/3.5 eq HOAt in DMF + 3.5 eq PyBOP/7 eq DIPEA or 3.5 eq DIC 1 x 40 min 6 3.5 eq Fmoc amino acid/DMF + 3.5 eq HATU or PyBOP or HCTU + 7 eq DIPEA 1 x 40 min 7 DMF, wash 5 x 1 min 8 20percent piperidine/DMF 1 x 5 min and 1 x 15 min 9 DMF, wash 5 x 1 min 10 CH2CI2, wash (at the end of the synthesis) 3 x 1 min Steps 5 to 9 are repeated to add each amino-acid residue. After the termination of the synthesis of the fully protected peptide fragment, one of the procedures A - E, as described herein below, was adopted subsequently, depending on which kind of interstrand linkages, as described herein below, were to be formed. Finally, the peptides were purified by preparative reverse phase LC-MS, as described herein below. Procedure A: Cyclization and work up of a backbone cyclized peptide having no interstrand linkage Cleavage, backbone cyclization and deprotection After assembly of the linear peptide, the resin was suspended in 1 mL of 1percent TFA in CH2CI2 (v/v; 0.14 mMol) for 3 minutes. After filtration the filtrate was neutralized with 1 mL of 20percent DI PEA in CH2CI2 (v/v; 1.15 mMol). This procedure was repeated four times to ensure completion of the cleavage. An alternative cleavage method comprises suspension of the resin in lmL of 20percent HFIP in CH2CI2 (v/v; 1.9 mMol) for 30 minutes, filtration and repetition of the procedure. The resin was washed three times with 1 mL of CH2CI2. The CH2CI2 layers containing product were evaporated to dryness. The fully protected linear peptide was solubilised in 8 mL of dry DM F. Then 2 eq of HATU and 2 eq of HOAt in dry DM F (1-2 mL) and 4 eq of DIPEA in dry DM F (1-2 mL) were added to the peptide, followed by stirring for ca. 16 h. The volatiles were removed by evaporation. The crude cyclic peptide was dissolved in 7 mL of CH2CI2 and washed three times with 4.5 mL 10percent acetonitrile in water (v/v). The CH2CI2 layer was then evaporated to dryness. To fully deprotect the peptide, 7 mL of cleavage cocktail TFA/DODT/thioanisol/H20 (87.5 :2.5:5:5) or TFA/TIS/H20 (95:2.5 :2.5) were added, and the mixture was kept for 2.5-4 h at room temperature until the reaction was completed. The reaction mixture was evaporated close to dryness, the peptide precipitated with 7 mL of cold Et20/pentane and finally washed 3 times with 4 mL of cold Et20/pentane. Procedures Bl and B2: Cyclization and work up of a backbone cyclized peptide having a disulfide interstrand linkage Bl: Formation of a disulfide interstrand linkage using DMSO After cleavage, backbone cyclization and deprotection of the linear peptide, as described in the corresponding section of procedure A, th...
  • 29
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 402846-43-9 ]
  • [ 112883-29-1 ]
  • [ 73724-45-5 ]
  • [ 135248-89-4 ]
  • [ 125238-99-5 ]
  • [ 143824-78-6 ]
  • [ 158599-00-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • C76H115N23O19S2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
1. Peptide synthesis 1.1 General synthetic procedures A general method for the synthesis of the peptidomimetics of the present invention is exemplified in the following. This is to demonstrate the principal concept and does not limit or restrict the present invention in any way. A person skilled in the art is easily able to modify these procedures, especially, but not limited to, choosing a different starting position within the ring system, to still achieve the preparation of the claimed cyclic peptidomimetic compounds of the present invention. Coupling of the first protected amino acid residue to the resin . In a dried flask, 2-chlorotritylchloride resin (polystyrene, 1percent crosslinked; loading: 1.4 mMol/g) was swollen in dry CH2CI2 for 30 min (7 mL CH2CI2 per g resin). A solution of 0.8 eq of the Fmoc-protected amino acid and 6 eq of DIPEA in dry CH2CI2/DMF (4/1) (10 mL per g resin) was added. After shaking for 2-4 h at rt the resin was filtered off and washed successively with CH2CI2, DMF, CH2CI2, DMF and CH2CI2. Then a solution of dry CH2CI2/MeOH/DIPEA (17:2:1) was added (10 mL per g resin). After shaking for 3 x 30 min the resin was filtered off in a pre-weighed sinter funnel and washed successively with CH2CI2, DMF, CH2CI2, MeOH, CH2CI2, MeOH, CH2CI2 (2x) and Et20 (2x). The resin was dried under high vacuum overnight. The final mass of resin was calculated before the qualitative control. Loading was typically 0.6 - 0.7 mMol/g. The following preloaded resins were prepared: Fmoc-Dab(Boc)-2-chlorotrityl resin, Fmoc-DDab(Boc)-2-chlorotrityl resin, Fmoc-Lys(Boc)-2-chlorotrityl resin, Fmoc- Trp(Boc)-2-chlortrityl resin, Fmoc-Phe-2-chlortrityl resin; Fmoc-Val-2-chlorotrityl resin, Fmoc-Pro-2-chlorotrityl resin, Fmoc-Arg(Pbf)-2-chlorotrityl resin and Fmoc-Glu(iBu)-2- chlorotrityl resin. Synthesis of the fully protected peptide fragment The synthesis was carried out on a Syro-peptide synthesizer (MultiSynTech GmbH) using 24 to 96 reaction vessels. In each vessel 0.04 mMol of the above resin were placed and the resin was swelled in CH2CI2 and DMF for 15 min, respectively. The following reaction cycles were programmed and carried out: Step Reagent Time 1 CH2CI2, wash and swell (manual) 1 x 3 min 2 DMF, wash and swell 2 x 30 min 3 20percent piperidine/DMF 1 x 5 min and 1 x 15 min 4 DMF, wash 5 x 1 min 5 3.5 eq Fmoc amino acid/3.5 eq HOAt in DMF + 3.5 eq PyBOP/7 eq DIPEA or 3.5 eq DIC 1 x 40 min 6 3.5 eq Fmoc amino acid/DMF + 3.5 eq HATU or PyBOP or HCTU + 7 eq DIPEA 1 x 40 min 7 DMF, wash 5 x 1 min 8 20percent piperidine/DMF 1 x 5 min and 1 x 15 min 9 DMF, wash 5 x 1 min 10 CH2CI2, wash (at the end of the synthesis) 3 x 1 min Steps 5 to 9 are repeated to add each amino-acid residue. After the termination of the synthesis of the fully protected peptide fragment, one of the procedures A - E, as described herein below, was adopted subsequently, depending on which kind of interstrand linkages, as described herein below, were to be formed. Finally, the peptides were purified by preparative reverse phase LC-MS, as described herein below. Procedure A: Cyclization and work up of a backbone cyclized peptide having no interstrand linkage Cleavage, backbone cyclization and deprotection After assembly of the linear peptide, the resin was suspended in 1 mL of 1percent TFA in CH2CI2 (v/v; 0.14 mMol) for 3 minutes. After filtration the filtrate was neutralized with 1 mL of 20percent DI PEA in CH2CI2 (v/v; 1.15 mMol). This procedure was repeated four times to ensure completion of the cleavage. An alternative cleavage method comprises suspension of the resin in lmL of 20percent HFIP in CH2CI2 (v/v; 1.9 mMol) for 30 minutes, filtration and repetition of the procedure. The resin was washed three times with 1 mL of CH2CI2. The CH2CI2 layers containing product were evaporated to dryness. The fully protected linear peptide was solubilised in 8 mL of dry DM F. Then 2 eq of HATU and 2 eq of HOAt in dry DM F (1-2 mL) and 4 eq of DIPEA in dry DM F (1-2 mL) were added to the peptide, followed by stirring for ca. 16 h. The volatiles were removed by evaporation. The crude cyclic peptide was dissolved in 7 mL of CH2CI2 and washed three times with 4.5 mL 10percent acetonitrile in water (v/v). The CH2CI2 layer was then evaporated to dryness. To fully deprotect the peptide, 7 mL of cleavage cocktail TFA/DODT/thioanisol/H20 (87.5 :2.5:5:5) or TFA/TIS/H20 (95:2.5 :2.5) were added, and the mixture was kept for 2.5-4 h at room temperature until the reaction was completed. The reaction mixture was evaporated close to dryness, the peptide precipitated with 7 mL of cold Et20/pentane and finally washed 3 times with 4 mL of cold Et20/pentane. Procedures Bl and B2: Cyclization and work up of a backbone cyclized peptide having a disulfide interstrand linkage Bl: Formation of a disulfide interstrand linkage using DMSO After cleavage, backbone cyclization and deprotection of the linear peptide, as described in the corresponding section of procedure A, th...
  • 30
  • Fmoc-N-methyl norleucine [ No CAS ]
  • [ 29022-11-5 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 103213-32-7 ]
  • [ 84000-07-7 ]
  • [ 132388-59-1 ]
  • [ 109425-51-6 ]
  • [ 79-11-8 ]
  • [ 125238-99-5 ]
  • [ 143824-78-6 ]
  • [ 203866-20-0 ]
  • C89H123ClFN23O20S [ No CAS ]
YieldReaction ConditionsOperation in experiment
Single-Coupling Procedure To the reaction vessel containing resin from the previous step was added piperidine:DMF (20:80 v/v, 2.0mL). The mixture was periodically agitated for 3 minutes and then the solution was drained through the frit.To the reaction vessel was added piperidine:DMF (20:80 v/v, 2.0 mL). The mixture was periodically agitatedfor 3 minutes and then the solution was drained through the frit. The resin washed successively six times asfollows: for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and theresulting mixture was periodically agitated for 30 seconds before the solution was drained through the frit. Tothe reaction vessel was added the amino acid (0.2M in DMF, 1.0 mL, 2 eq), then HATU (0.2M in DMF, 1.0mL, 2 eq), and finally DIPEA (0.4M in DMF, 1.0 mL, 4 eq). The mixture was periodically agitated for 15minutes, then the reaction solution was drained through the frit. The resin washed successively four times asfollows: for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and theresulting mixture was periodically agitated for 30 seconds before the solution was drained through the frit. Tothe reaction vessel was added acetic anhydride (2.0 mL). The mixture was periodically agitated for 10minutes, then the solution was drained through the frit. The resin washed successively four times as follows:for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and the resultingmixture was periodically agitated for 90 seconds before the solution was drained through the frit. Theresulting resin was used directly in the next step.
  • 31
  • Fmoc-Val-Wang resin [ No CAS ]
  • [ 35661-40-6 ]
  • [ 71989-14-5 ]
  • [ 108-24-7 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 143824-78-6 ]
  • [ 198561-07-8 ]
  • [ 684270-46-0 ]
  • C72H98N13O17Pol [ No CAS ]
  • 32
  • Fmoc-Val-Wang resin [ No CAS ]
  • [ 942518-20-9 ]
  • [ 35661-40-6 ]
  • [ 71989-14-5 ]
  • [ 108-24-7 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 143824-78-6 ]
  • [ 198561-07-8 ]
  • C73H100N13O17Pol [ No CAS ]
  • 33
  • [ 4530-20-5 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 77128-73-5 ]
  • [ 143824-78-6 ]
  • [ 1620146-28-2 ]
YieldReaction ConditionsOperation in experiment
21% General procedure: Solid-phase peptide synthesis was carried out on Fmoc-cappedpolystyrene rink amide MBHA resin (100-200 mesh, 0.05-0.15 mmol scale). The following amino acidderivatives suitable for Fmoc SPPS were used: Fmoc-Cys(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(tBu)-OH,Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Pro-OH, Fmoc-Thr(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-Val-OH, Fmoc-aPhe-OH, Fmoc-aVal-OH,Fmoc-aTyr(tBu)-OH, Fmoc-(N-Me)-Phe-OH, Fmoc-D-Ser(TBS)-OH, Fmoc-D-hSer(TBS)-OH, Boc-Gly-OH. Dry resin was washed with DMF 3x and allowed to swell in DMF for 2 h prior to use. Allreactions were carried out using gentle agitation. Fmoc deprotection steps were carried out by treating theresin with a solution of 20percent piperidine/DMF (15 min x 2). Coupling of Fmoc-protected amino acids aswell as (N2-Boc)-hydrazino acids was effected using 5 equiv. HATU (0.5 M in DMF), 10 equiv. DIEA(1.0 M in DMF), and 5 equiv. of the carboxylic acid in DMF at 50 oC (1 h). Coupling of residues Nterminalto the hydrazino acids was carried out with 30 equiv. collidine and 10 equiv. of pre-formed Fmocamino acid chlorides (or 10 equiv. of Fmoc amino acids with 3.3 equiv. triphosgene) in THF at rt (1 h x2).3 After each reaction the resin was washed with DMF 2x, DCM 1x, then DMF 1x. Peptides undergoingMitsunobu reactions were capped with Boc-Gly-OH, washed with DCM 3x, and treated with 5 equiv.TBAF in THF for 3 h at rt. After the reaction the resin was washed with DCM 3x and then treated with 5equiv. triphenylphosphine in THF followed by 5 equiv. of DIAD, then strirred overnight at rt. Peptideswere cleaved from the resin by incubating with gentle stirring in 2 mL of 95:5 TFA:H2O at rt for 2 h. Thecleavage mixture was filtered and the resin was rinsed with an additional 1 mL of cleavage solution. Thefiltrate was treated with 8 mL of cold Et2O to induce precipitation. The mixture was centrifuged and thesupernatant was removed. The remaining solid was washed 2 more times with Et2O and dried undervacuum. Cysteine-containing peptides were purified, lyophilized, dissolved in 10mM phosphate buffer(pH 8.9, 5percent v/v DMSO), stirred until analytical HPLC and MS showed complete conversion to the cyclicdisulfide (1-2 d), and then repurified. Peptides were analyzed and purified on C12 RP-HPLC columns(preparative: 4mu, 90A, 250 x 21.2 mm; analytical: 4mu, 90A, 150 x 4.6 mm) using linear gradients ofMeCN/H2O (with 0.1percent formic acid), then lyophilized to afford white powders. All peptides werecharacterized by LCMS (ESI), HRMS (ESI-TOF), and 1H NMR. Analytical HPLC samples for all purifiedpeptides were prepared as 1 mM in H2O containing 20 mM phosphate buffer at pH 7.0. Linear gradientsof MeCN in H2O (0.1percent formic acid) were run over 20 minutes and spectra are provided for lambda = 220 nm.
  • 34
  • [ 35661-39-3 ]
  • [ 35661-40-6 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 86123-10-6 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • [ 684270-46-0 ]
  • C74H88N22O14 [ No CAS ]
  • 35
  • [ 35661-39-3 ]
  • [ 35661-40-6 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 86123-10-6 ]
  • [ 109425-51-6 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • [ 684270-46-0 ]
  • C140H148N21O19PolS [ No CAS ]
  • 36
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 108-24-7 ]
  • [ 71989-23-6 ]
  • [ 103213-32-7 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • acetyl-RLIEDICLPRWGCLWEDDX-NH2 [ No CAS ]
 

Historical Records

Categories