*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 159857-60-0 |
Formula : | C41H40N2O5 |
M.W : | 640.77 |
SMILES Code : | O=C(O)[C@@H](NC(OCC1C2=C(C3=C1C=CC=C3)C=CC=C2)=O)CCCCNC(C4=CC=CC=C4)(C5=CC=C(OC)C=C5)C6=CC=CC=C6 |
MDL No. : | MFCD00270542 |
InChI Key : | CTYHQVFFQRDJSN-LHEWISCISA-N |
Pubchem ID : | 11422318 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0374) Deconvolution of the mass signals found under the peak with retention time 9.935 min revealed the peptide mass 4853.73 which is in line with the expected value of 4853.67. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 ODB 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). Deconvolution of the mass signals found under the peak with retention time 9.824 min revealed the peptide mass 4839.67 which is in line with the expected value of 4839.67. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized. |