Structure of 10602-06-9
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 10602-06-9 |
Formula : | C10H8O2 |
M.W : | 160.17 |
SMILES Code : | O=C(OC)C1=CC=CC(C#C)=C1 |
MDL No. : | MFCD08703579 |
InChI Key : | DDXZMLZQQWVSRX-UHFFFAOYSA-N |
Pubchem ID : | 11275159 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.1 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 45.66 |
TPSA ? Topological Polar Surface Area: Calculated from |
26.3 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.4 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.65 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.53 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.47 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.34 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.28 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.74 |
Solubility | 0.291 mg/ml ; 0.00182 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.85 |
Solubility | 0.224 mg/ml ; 0.0014 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.54 |
Solubility | 0.457 mg/ml ; 0.00285 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.4 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.87 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96% | terf-Butyl 3-ethynylbenzoate (117) (1.50 g, 9.37 mmoi) was dissolved in dry DCM (70 mL) and TFA (35.9 mL, 488 mmoi) was added carefully. The reaction was stirred at room temperature for 3 hours, concentrated in vacuo and toluene was added and then removed in vacuo to give a pale yellow solid. This material was dissolved in methanol (50 mL) and cone. H2S04 (-1 mL) was added and the resulting solution was stirred at 85 C for 20 hours. Upon cooling to room temperature, the volatiies were removed in vacuo and the residue was diluted with EtOAc (200 mL) and sat. aq. NaHCO3 (100 mL) was added slowly. The layers were separated and the aqueous layer was extracted with EtOAc (200 mL), the organic layers were combined and washed with water (100 mL), brine (100 mL), dried ( gS04), filtered and concentrated in vacuo to give the title compound (131) (1.136 g, 96% yield over 2 steps) as a pale yellow solid; 1H NMR (400 MHz, CDCI3) delta 8.17 (t, J = 1.5 Hz, 1 H), 8.03 - 8.00 (m, 1 H), 7.66 (dt, J = 7.7, 1.4 Hz, 1 H), 7.41 (td, J = 7.8, 0.4 Hz, 1 H), 3.93 (s, 3H), 3.12 (s, 1 H). LCMS Method C: rt 5.84 min. | |
rert-Butyl 3-ethynylbenzoate {117) ( .50 g, 9.37 mmol) was dissolved in dry DCM (70 mL) and TFA (35.9 mL, 468 mmol) was added carefully. The reaction was stirred at room temperature for 3 hours, concentrated in vacuo and toluene was added and then removed in vacuo to give a pale yellow solid. This material was dissolved in methanol (50 mL) and cone. H2S04 (-1 mL) was added and the resulting solution was stirred at 65 C for 20 hours. Upon cooling to room temperature, the volatiles were removed in vacuo and the residue was diluted with EtOAc (200 mL) and sat. aq. NaHC03 (100 mL) was added slowly. The layers were separated and the aqueous layer was extracted with EtOAc (200 mL), the organic layers were combined and washed with water (100 mL), brine (100 mL), dried (MgS04), filtered and concentrated in vacuo to give the title compound (131) (1.136 g, 96% yield over 2 steps) as a pale yellow solid; 'H NMR (400 MHz, CDCI3) delta 8.17 (t, J = 1.5 Hz, 1 H), 8.03 - 8.00 (m, 1 H), 7.66 (dt, J = 7.7, 1.4 Hz, 1 H), 7.41 (td, J = 7.8, 0.4 Hz, 1 H), 3.93 (s, 3H), 3.12 (s, 1 H). LCMS Method C: rt 5.84 min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
22% | Example 75: Synthesis of 3-[2-(l,3-thiazol-4-yl)ethynyl]benzoic acid: 3-[2-(l,3-thiazol-4-yl)ethynyl]benzoic acid. A mixture of 3-ethynyl-l-yl- benzoic acid methyl ester (40 mg, 0.25 mmol), <strong>[34259-99-9]4-bromo-thiazole</strong> (82 mg, 0.5 mmol), palladium tetrakis-triphenylphosphine (29 mg, 0.025 mmol) and copper iodide (9.5 mg, 0.05 mmol), potassium carbonate (69 mg, 0.5 mmol) in 1,2- dimethoxyethane/water (1 mL/0.3 mL) was degassed with N2 for 5 minutes and then heated at 60 °C for 4 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by preparative thin layered chromatography eluting with ethyl acetate/hexane (30percent) to give the ester intermediate. To this intermediate in tetrahydrofuran/methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 18 mg (22percent for 2 steps) of the pure product as a white solid. FontWeight="Bold" FontSize="10" H NMR (300MHz, DMSO) delta = 13.2 (br. s., 1H), 9.18 (d, J=2.1 Hz, 1H), 8.19 (d, J=1.8 Hz, 1H), 8.05 (t, J=1.5 Hz, 1H), 7.98 (td, J=1.4, 7.8 Hz, 1H), 7.81 (td, J=1.4, 7.8 Hz, 1H), 7.57 (t, J=7.8 Hz, 1H). LCMS (ESI) mlz 230.0 (M+l)+. |
A235723 [61266-36-2]
Methyl 4-(3-hydroxyprop-1-yn-1-yl)benzoate
Similarity: 0.90