Structure of 107-75-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
| Size | Price | VIP Price |
DE Stock US Stock |
Asia Stock Global Stock |
In Stock |
| {[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock Inquiry - | Login - + |
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
| CAS No. : | 107-75-5 |
| Formula : | C10H20O2 |
| M.W : | 172.26 |
| SMILES Code : | CC(CCCC(C)(C)O)CC=O |
| MDL No. : | MFCD00014681 |
| InChI Key : | WPFVBOQKRVRMJB-UHFFFAOYSA-N |
| Pubchem ID : | 7888 |
| GHS Pictogram: |
|
| Signal Word: | Warning |
| Hazard Statements: | H317 |
| Precautionary Statements: | P261-P280 |
| Num. heavy atoms | 12 |
| Num. arom. heavy atoms | 0 |
| Fraction Csp3 | 0.9 |
| Num. rotatable bonds | 6 |
| Num. H-bond acceptors | 2.0 |
| Num. H-bond donors | 1.0 |
| Molar Refractivity | 51.58 |
| TPSA ? Topological Polar Surface Area: Calculated from |
37.3 Ų |
| Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.31 |
| Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.64 |
| Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.15 |
| Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.77 |
| Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.29 |
| Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.03 |
| Log S (ESOL):? ESOL: Topological method implemented from |
-1.55 |
| Solubility | 4.91 mg/ml ; 0.0285 mol/l |
| Class? Solubility class: Log S scale |
Very soluble |
| Log S (Ali)? Ali: Topological method implemented from |
-2.04 |
| Solubility | 1.58 mg/ml ; 0.0092 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.13 |
| Solubility | 1.29 mg/ml ; 0.00746 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
| BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
| P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
| CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
| CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
| CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
| CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
| CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
| Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.19 cm/s |
| Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
| Ghose? Ghose filter: implemented from |
None |
| Veber? Veber (GSK) filter: implemented from |
0.0 |
| Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
| Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
| Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
| PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
| Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
| Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
| Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.09 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 86% | EXAMPLE 14 Proceeding in the same manner as in Example 1, except using 7-hydroxyneryldiethylamine in place of the 7-hydroxygeranyldiethylamine used in Example 1, 65 g (yield: 86%) of 7-hydroxycitronellal was obtained. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| With sodium acetate; toluene-4-sulfonic acid; In methanol; | EXAMPLE 2 The starting material of Example 1 can be prepared as follows: 172.2 g. of hydroxycitronellal and 106.1 g. of orthoformic acid methyl ester are treated dropwise, while cooling with ice, with a solution of 0.5 g. of p-toluenesulphonic acid in 800 ml. of absolute methanol. After 2 hours, 5 g. of sodium acetate are added and the mixture is concentrated on a rotary evaporator at 50C. Upon distillation, the residue yields pure 1,1-dimethoxy-3,7-dimethyl-7-octanol; boiling point = 102C/0.4 mmHg; nD22 = 1.4400. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 92% | With dibutylamine; hexanoic acid; In water; at 95℃; for 0.666667h; | EXAMPLE 5A 3 L four-necked flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 1032 g (6.0 mol) of hydroxycitronellal, 520 g (6.4 mol) of a 37% by mass formaldehyde aqueous solution, 53 g (0.41 mol) of dibutyl amine and 10 g (0.09 mol) of hexanoic acid, and the contents in the flask were stirred while heating at 95C. After the elapse of 40 min, it was confirmed that no hydroxycitronellal was present in the raw mixture, and then the mixture was cooled and separated into two layers. The thus separated organic layer was subjected to distillation treatment, thereby obtaining 1058 g (5.5 mol) of 3,7-dimethyl-2-methylene-7-hydroxyoctanal (purity as measured by gas chromatography: 95%) (yield based on theoretical amount: 92%). |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 74% | In 1,4-dioxane; at 60℃; for 24h; | To a stirring solution of vinyl phosphonate (1 mmol) in 1,4-dioxane (1 mL) was addedaldehyde (5 mmol) and the reaction mixture stirred at 60 C for 24 h unless otherwise stated.The reaction mixture was concentrated in vacuo and the resultant gamma-ketophosphonate purifiedas described below. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 13%Chromat. | With 5% Ru/SiO2; oxygen; at 80 - 150℃; for 12h; | Example 1 [0105] This example presents a comparison of various catalysts consisting of a metal deposited on a silicon media. All catalysts were prepared using ionic exchange starting from a colloidal silica stabilized with ammonium ions and metal chloride corresponding to the active species. These items were tested in regards to the functionalization reaction of methyl oleate by hydroxycitronellal which lead to the synthesis of 9-hydroxy-10-(7-hydroxy-3,7-dimethyloctanoyloxy)methyl octadecanoate and of 10-hydroxy-9-(7-hydroxy-3,7-dimethyloctanoyloxy)methyl octadecanoate as illustrated in Diagram 2. [0106] The reaction was carried out in a 100 ml glass reactor with mechanical agitation. Twenty-five grams (25.0 g) of methyl ester of sunflower oil HTO (high oleic content-purity: 85% methyl oleate) as well as 13.0 g of hydroxycitronellal (FCC Grade: Purity?95%-Sigma-Aldrich, Ref. W258318) were introduced into the reactor. The solid catalyst of the metal type supported on silica contains 5% by weight of the quantity of methyl oleate engaged, i.e. 250 mg. The environment was heated to 80 C. with continuous air bubbling. The air flow was controlled by a ball flow meter at 70 ml/min. After 7 hours of reaction time, the air flow was stopped and the reaction medium was raised to 150 C. These parameters were maintained for 5 additional hours. Samples of the reaction medium were taken at regular intervals in order to determine the status of the reaction. The reagent conversion rates and the yield rates of the desired products after 7 and 12 hours of reaction time are shown in Table 1: [TABLE-US-00001] Conversion Function- into alized Conversion hydroxy- Epoxide products Type of Reaction into methyl citronellala yield yield catalyst time (hr.) oleate (%) (%) (%) (%) no catalyst 7 37 70 27 11 12 46 92 9 24 Ru/SiO2 7 75 95 52 24 12 80 100 13 39 Co/SiO2 7 76 100 31 19 12 77 100 16 29 Zn/SiO2 7 66 99 30 20 12 69 100 10 27 Ni/SiO2 7 51 90 34 15 12 59 98 13 25 Cr/SiO2 7 49 89 31 15 12 56 97 13 25 Cu/SiO2 7 34 90 24 16 12 38 97 11 22 Rh/SiO2 7 34 86 18 17 12 40 96 8 26 [0107] The composition of the reaction medium was determined by gas phase chromatographic analysis. The Agilent Technologies 6870N chromatograph is equipped with a capillary column (SGE-BPX-70-length: 30 m, inside diameter: 0.25 mm, film thickness: 0.25 mum), of a split/splitless injector and a flame ionization detector (temperature of the injector and the detector: 280 C.). The temperature program of the furnace was as follows: 80 C. (0 min.)-13 C./min.-180 C. (6 min.)-13 C./min.-220 C. (6 min.)-17 C./min.-250 C. (10 min.). [0108] The hold time for the various products under the conditions described above are as follows: dodecane (2.9 min.); hydroxycitronellal (8.9 min.); methyl oleate (12.6 min.); methyl trans-9,10epoxy-stearate (18.9 min.); methyl cis-9,10-epoxy-stearate (19.2 min). [0109] The conversion of reagents at time t is expressed as follows: (number of initial moles of reagent-number of moles of reagent at time t)/number of initial moles of reagent*100. [0110] The epoxide yield at time t was calculated as follows: number of moles of epoxide at time t/(number of initial moles of methyl oleate*relative response coefficient of 9,10-epoxystearate in relation to methyl oleate)*100. [0111] The functionalized products, i.e. the methyl octadecanoate 9-hydroxy-10-(7-hydroxy-3,7-dimethyloctanoyloxy) and the methyl octadecanoate 10-hydroxy-9-(7-hydroxy-3,7-dimethyloctanoyloxy), were analyzed by steric exclusion chromatography. [0112] The Waters Alliance 2695 chromatograph is equipped with a refraction index detector (RI 410) and with two different columns (Styrage-HR 0.5 and Styragel-HR 1). The temperature of the furnace containing the columns is set at 30 C. and tetrahydrofurane (THF) is used as an eluent at a flow rate of 0.8 ml/min. [0113] Under these conditions, the hold times were as follows: products with high molecular weight (>1000 uma; 15.1 min); functionalized products (16.2 min.); methyl oleate and methyl 9,10-epoxy-stearate (18.1 min.); hydroxycitronellal (19.0 min.). [0114] The functionalized products yield is the relative surface area of the chromatographic peak expressed as a percentage of the total of all peaks. |
| 52%Chromat. | With 5% Ru/SiO2; oxygen; at 80℃; for 7h; | Example 1 [0105] This example presents a comparison of various catalysts consisting of a metal deposited on a silicon media. All catalysts were prepared using ionic exchange starting from a colloidal silica stabilized with ammonium ions and metal chloride corresponding to the active species. These items were tested in regards to the functionalization reaction of methyl oleate by hydroxycitronellal which lead to the synthesis of 9-hydroxy-10-(7-hydroxy-3,7-dimethyloctanoyloxy)methyl octadecanoate and of 10-hydroxy-9-(7-hydroxy-3,7-dimethyloctanoyloxy)methyl octadecanoate as illustrated in Diagram 2. [0106] The reaction was carried out in a 100 ml glass reactor with mechanical agitation. Twenty-five grams (25.0 g) of methyl ester of sunflower oil HTO (high oleic content-purity: 85% methyl oleate) as well as 13.0 g of hydroxycitronellal (FCC Grade: Purity?95%-Sigma-Aldrich, Ref. W258318) were introduced into the reactor. The solid catalyst of the metal type supported on silica contains 5% by weight of the quantity of methyl oleate engaged, i.e. 250 mg. The environment was heated to 80 C. with continuous air bubbling. The air flow was controlled by a ball flow meter at 70 ml/min. After 7 hours of reaction time, the air flow was stopped and the reaction medium was raised to 150 C. These parameters were maintained for 5 additional hours. Samples of the reaction medium were taken at regular intervals in order to determine the status of the reaction. The reagent conversion rates and the yield rates of the desired products after 7 and 12 hours of reaction time are shown in Table 1: [TABLE-US-00001] Conversion Function- into alized Conversion hydroxy- Epoxide products Type of Reaction into methyl citronellala yield yield catalyst time (hr.) oleate (%) (%) (%) (%) no catalyst 7 37 70 27 11 12 46 92 9 24 Ru/SiO2 7 75 95 52 24 12 80 100 13 39 Co/SiO2 7 76 100 31 19 12 77 100 16 29 Zn/SiO2 7 66 99 30 20 12 69 100 10 27 Ni/SiO2 7 51 90 34 15 12 59 98 13 25 Cr/SiO2 7 49 89 31 15 12 56 97 13 25 Cu/SiO2 7 34 90 24 16 12 38 97 11 22 Rh/SiO2 7 34 86 18 17 12 40 96 8 26 [0107] The composition of the reaction medium was determined by gas phase chromatographic analysis. The Agilent Technologies 6870N chromatograph is equipped with a capillary column (SGE-BPX-70-length: 30 m, inside diameter: 0.25 mm, film thickness: 0.25 mum), of a split/splitless injector and a flame ionization detector (temperature of the injector and the detector: 280 C.). The temperature program of the furnace was as follows: 80 C. (0 min.)-13 C./min.-180 C. (6 min.)-13 C./min.-220 C. (6 min.)-17 C./min.-250 C. (10 min.). [0108] The hold time for the various products under the conditions described above are as follows: dodecane (2.9 min.); hydroxycitronellal (8.9 min.); methyl oleate (12.6 min.); methyl trans-9,10epoxy-stearate (18.9 min.); methyl cis-9,10-epoxy-stearate (19.2 min). [0109] The conversion of reagents at time t is expressed as follows: (number of initial moles of reagent-number of moles of reagent at time t)/number of initial moles of reagent*100. [0110] The epoxide yield at time t was calculated as follows: number of moles of epoxide at time t/(number of initial moles of methyl oleate*relative response coefficient of 9,10-epoxystearate in relation to methyl oleate)*100. [0111] The functionalized products, i.e. the methyl octadecanoate 9-hydroxy-10-(7-hydroxy-3,7-dimethyloctanoyloxy) and the methyl octadecanoate 10-hydroxy-9-(7-hydroxy-3,7-dimethyloctanoyloxy), were analyzed by steric exclusion chromatography. [0112] The Waters Alliance 2695 chromatograph is equipped with a refraction index detector (RI 410) and with two different columns (Styrage-HR 0.5 and Styragel-HR 1). The temperature of the furnace containing the columns is set at 30 C. and tetrahydrofurane (THF) is used as an eluent at a flow rate of 0.8 ml/min. [0113] Under these conditions, the hold times were as follows: products with high molecular weight (>1000 uma; 15.1 min); functionalized products (16.2 min.); methyl oleate and methyl 9,10-epoxy-stearate (18.1 min.); hydroxycitronellal (19.0 min.). [0114] The functionalized products yield is the relative surface area of the chromatographic peak expressed as a percentage of the total of all peaks. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 79% | Compounds 46: 7-hyroxycitronellal (140 mu, 0.75 mmol), Cu(OTf)2 (2.2 mg, 2.5 mol %), ethanethiol (108 mu, 1.5 mmol) and 1,3,5- trimethoxybenzene (42 mg, 0.25 mmol) were reacted according to method B. The mixture was stirred for 2 h at rt. After the addition of Et3SiH (116 mu, 0.75 mmol) the reaction was stirred for 1 h at room temperature. The residual material was purified by column chromatography (silica gel 40-60, hexane / ethyl acetate 80:20) affording compound 46 (64 mg, 79% yield) as a thick oil. Characterization data of compound 46: lH NMR (CDCl3/400 MHz): delta 6.13 (s, 2H), 3.80 (s, 3H), 6.79 (s, 6H), 2.60 - 2.48 (m, 2H), 1.49 - 1.24 (m, 9H), 1.21 (s, 6H), 0.93 (d, J = 6.2, Hz, 3H); 13C NMR (CDCl3/100 MHz): 6 159.0, 158.7, 112.3, 90.6, 71.1, 55.7, 55.3, 44.4, 37.3, 36.6, 32.9, 29.3, 29.2, 21.6, 20.1, 19.7; HRMS (ESI): m/z calcd for Ci9H3204 [M+H]+ 325.2373 found 325.2363. |

A149671 [58888-76-9]
3-Hydroxy-3-methylhexanoic acid
Similarity: 0.78

A246884 [625-08-1]
3-Hydroxy-3-methylbutanoic acid
Similarity: 0.74

A475661 [878792-30-4]
4-Hydroxybicyclo[2.2.2]octane-1-carbaldehyde
Similarity: 0.86

A665119 [59-23-4]
(2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal
Similarity: 0.65

A688878 [50675-18-8]
Tetrahydropyran-4-carbaldehyde
Similarity: 0.63

A475661 [878792-30-4]
4-Hydroxybicyclo[2.2.2]octane-1-carbaldehyde
Similarity: 0.86

A149671 [58888-76-9]
3-Hydroxy-3-methylhexanoic acid
Similarity: 0.78

A166681 [17768-36-4]
2-(3-Hydroxyadamantan-1-yl)acetic acid
Similarity: 0.78

A188647 [99799-09-4]
2-(4-Hydroxycyclohexyl)acetic acid
Similarity: 0.77