*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
4-Aminobenzoic acid is an intermediate in the synthesis of folate by bacteria, plants, and fungi.
Synonyms: PABA; Vitamin Bx; Aminobenzoic acid
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Ohoueu, Marie-Josiane ;
Abstract: The synthesis of a series of compounds designed to act as inhibitors of metallo-βlactamase enzymes (MBLs), a sub-class of β-lactamases found in several clinically difficult to treat bacteria that are responsible for the widespread β-lactam antibiotic resistance, are described. The strategy involves the introduction of a functional group, such as an epoxide or thiirane, in the designed inhibitors capable of covalently binding the MBL targets and shutting them down irreversibly. This would prevent the enzymes from hydrolyzing the antibiotic drugs which would maintain their efficacy as a form of treatment. This was first attempted through the development of a convergent synthesis which involved the formation of L- and D-vinylglycine methyl ester, serving for the incorporation of the 3-membered ring, in a five-step synthetic pathway. This was subsequently introduced using coupling chemistry to a dipeptide. The intermediate dipeptide precursor synthesized through amino acid coupling was phenylglycine-serine (Phg-Ser) followed by a phenylacetic acid-serine (PAA-Ser), which both mimic an open lactam structure. They were subjected to halogenation to convert the serine alcohol functional group to a bromide for the alkylation reaction with the amino group contained in the protected vinylglycine. However, the bromination of Phg-Ser proved to be difficult while the formation of the desired tripeptide with the brominated PAA-Ser was not observed. Evidence of an alkene product was observed which was attributed to the acidic proton at the α-position favoring the elimination of the bromine. Those limitations led to the modification of the serine core to aspartic acid which was thought to circumvent the elimination issue by introducing the vinylglycine by amide bond formation rather than alkylation. Investigation with the phenylacetic-acid-aspartic acid dipeptide led to a promising route in which the coupling of the vinylglycine was achieved efficiently. The subsequent last steps of epoxidation of the alkene and deprotection seemed to be successful although optimization of these is still required. Another strategy for the development of covalent inhibitors was the synthesis of compounds inspired from L-captopril, an inhibitor of angiotensin converting enzyme (ACE) inhibitors which plays a role in heart attack. Here, the strategy involves the synthesis of an alkenecontaining intermediate with 2-methylprop-2-enoic acid or 2-methyl-3-butenoic acid through acylation of proline ethyl ester with the corresponding acyl chlorides. The intermediates were successfully obtained, enabling the formation of the epoxide and thiirane compounds. Subsequently, the ethyl ester hydrolysis was done to provide the final derivatives 1-(2-methyloxirane-2-carbonyl) pyrrolidine-2-carboxylic acid (82) and 1-(2-methylthiirane-2-carbonyl)pyrrolidine-2-carboxylic acid (83) with evidence of the formation of the desired 82 and 83. In the case of the longer chain analogues, 1-[2-(oxirane-2yl)propanoyl] pyrrolidine-2-carboylic acid (84) and 1-[2-(thiirane-2yl)propanoyl] pyrrolidine-2-carboylic acid (85), the deprotection led to the isolation of the final thiirane compound 85 in an overall 5% yield while this last deprotection step remains to be optimized to obtain 84. The synthetic pathway of the open lactam derivatives was overall successful with only the last two steps requiring further optimization which would provide a new class of β-lactamase inhibitors. The pathway for the development of the proline derivatives afforded efficiently one of the desired captopril derivatives while the purification of last step to isolate the remaining compounds needs to be improved. The strategy presented could be used in the future to provide further library compounds for MBL inhibition for further studies. General Introduction: This dissertation is composed of three separate chapters: (I) Introduction to β-lactamases and antimicrobial resistance, (II) Development of open lactam analogues as covalent inhibitors targeting metallo-β-lactamases, (III) Development of captopril-inspired compounds as covalent inhibitors of metallo-β-lactamases. The first chapter serves as introduction to the subject under the form of a mini review. The subsequent chapters investigate the strategies which have been explored in order to obtain the desired targets. They each are comprised of an introduction, results and discussion, and conclusion. Following the chapters is an appendix of relevant spectroscopic data related to the experimental procedures of the different chapters.
Show More >
CAS No. : | 150-13-0 |
Formula : | C7H7NO2 |
M.W : | 137.14 |
SMILES Code : | O=C(O)C1=CC=C(N)C=C1 |
Synonyms : |
PABA; Vitamin Bx; Aminobenzoic acid
|
MDL No. : | MFCD00007894 |
InChI Key : | ALYNCZNDIQEVRV-UHFFFAOYSA-N |
Pubchem ID : | 978 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
42% | With bromine In methanol at -10 - -5℃; for 2 h; | Synthesis of 2-aminobenzothiazole-6-carbolic Acid(2)NaSCN (65 g, 0.8 mol) was added to a suspension of commercially available 4-amino-benzoic acid (1, 100 g, 0.73 mol) in MeOH followed by the addition of Br2 (38 ml, 0.73 mol) in portions. The above solution was allowed to cool to -10° C. and stirred for 2 h while keeping the inner temperature below -5° C. The precipitate was then filtered and suspended in 350 ml of 1 M HCl. The suspension was heated to reflux for 30 min. After immediate filtration, 150 ml concd HCl was added to the hot filtrate to give 70 g (yield 42percent) of 2-amino-benzothiazole-6-carboxylic acid (2) (as a white solid), which was dried and used without further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96.7% | PREPARATION EXAMPLE EX45 (0284) This example demonstrates the production of 4-benzoylamino benzoic acid having the following structure (0285) (0286) In a 1 L beaker with mechanical stirring, 27.4 g of 4-aminobenzoic acid (0.2 mol) was mixed in 300 mL of DI H2O. Then, 21.2 g (0.2 mol) of sodium carbonate was added until the pH value became 9.1 and all the 4-amino benzoic acid dissolved in the water. (0287) Then, 56.24 g (0.4 mol) of benzoyl chloride was added dropwise to the beaker at room temp. The reaction was stirred overnight. A solid formed during the reaction, and the pH stabilized at 4.0. The pH was further lowered to about 2 with hydrochloric acid. The product was collected by filtration and washed with hot water to remove excess benzoic acid. The solid product was dried in an oven at 110° C. and 44.21 g of the product was obtained (yield 96.7percent). | |
81% | With pyridine; at 20℃; | General procedure: Aromatic halides (1.0 equivalent) were added dropwise to the stirred solution of aminobenzoic acids (200 mg) in pyridine. Mixtures were stirred at room temperature for about all target derivatives except of benzyl based derivative. The pH of reaction mixtures was kept basic using pyridine. Progress of the reaction was monitored using TLC plates. Upon complete formation of target compounds, the desired products were filtered as white precipitates. For benzyl based derivatives reaction mixture was refluxed for more than 24 hours and product was obtained by evaporating the solvent under vacuum. |
General procedure: A solution of aminobenzoic acid in dichloromethane at room temperature was treated with triethylamine and stirred for 30 min to obtain a pellucid solution. The substituted benzoyl chloride was then slowly added. After precipitates were observed, the mixture was stirred at room temperature for another 2 h. The suspension was concentrated under reduced pressure, and the residue was purified by hot acetic acid to give compounds 4a-f. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With Galerina sp. HC1 laccase; oxygen; In aq. acetate buffer; at 22℃;pH 5.0; | General procedure: For the oxidation reactions 5mM of a model compound was allowed to react with 0.4U/mL laccase in 20mM sodium acetate buffer pH 5, at room temperature (?22°C) with mixing on rocking table (Mixer 440, Swelab Instrument AB, Sweden). The reaction was stopped by adding sodium azide to the final concentration of 40muM. The coupling of equimolar amount of PABA (5mM) to the compounds was also investigated under similar conditions. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With tin(II) chloride dihdyrate; In para-xylene; for 8.25h;Dean-Stark; Reflux; Inert atmosphere; | The preparation of 4,4?-(1,5-dihydroimidazo[4,5-f]benzimidazole-2,6-diyl)dianiline tetramesylate was accomplished following the same general procedure described in Example 4. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
82% | With acetic acid; for 12h;Reflux; | To a solution of <strong>[1122-12-9]3,4-<strong>[1122-12-9]dibromomaleic anhydride</strong></strong> (500 mg, 1.95 mmol) in acetic acid (10 ml), p-amino benzoic acid (322 mg, 2.35 mmol) was added. The mixture was heatedreflux condition for 12 h. The solvent was removed under reduced pressure. The crude mixture was purified by column chromatography over silica gel using petroleum ether and ethyl acetate as mobile phase to afford the desired product (550 mg, 82 percent) as yellow solid.1H NMR(DMSO-d6) oe (ppm): 7.50 (2H, d, J = 8.0 Hz), 8.04 (2H, d, J = 8.0 Hz)(Figure 8). 13C NMR(DMSO-d6) oe (ppm):127.5, 130.6, 130.9, 131.1, 136.0, 163.9, 167.6 (Figure 9). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
85.1% | General procedure: A solution of PABA/PAH (1.37/1.94 g, 10 mmol) in water (5 mL) and a solution of NaNO2 (0.69 g, 10 mmol) in water (5 mL) were mixed. The mixture was stirred in an ice bath (3-5 °C) for 15 min and acidified with 3 M HCl and then stirred again for a further 5 min. Complete diazotization was observed from the presence of excess nitrous acid tested by potassium iodide/starch indicator paper. THC (3.72 g, 10 mmol) was dissolved in 0.5 M NaOH and stirred at 3-5 °C. The diazonium salt solution was added to this solution, and the pH was then adjusted to 10 with 1 M NaOH. The reddish brown solution obtained was further stirred for 30 min. The mixture was acidified with 3 M HCl, and the reddish-brown solid was filtered off and washed with water [23]. Finally, the product (IA/B) was purified by silica gel column chromatography with dichloromethane:methanol (9:1) as a mobile phase. The dried product was characterized by IR, 1H NMR and 13C NMR. THC-PABA (IA): Yellow powder, yield 85.10percent: IR (KBr, nu cm-1): 1035 (C-O), 1430, 1514 (N=N), 1650-1678 (C=O), 2900-2940 (C-H), 3413 (O-H). 1H NMR (DMSO-d6, 500 MHz): 2.73-2.80 (4H, sex, CH2 THC), 3.10-3.16 (4H, qn, CH2 THC), 3.70 (3H, s, CH3 THC), 3.72 (3H, s, CH3 THC), 6.57-6.66 (4H, m, ArH THC), 6.73-6.75 (4H, m, ArH THC), 7.58-7.61 (2H, sex, ArH PABA), 7.93-7.96 (2H, sex, ArH, PABA), 8.63-8.65 (2H, d, OH THC), 13.52 (1H, s, enol THC). 13C NMR (DMSO-d6, 300 MHz): 29.0, 29.9, 44.5, 55.6, 55.7, 112.7, 112.7, 115.4, 115.5, 115.8, 120.4, 120.5, 126.7, 131.1, 131.8, 132.1, 134.8, 144.8, 144.8, 145.7, 147.5, 166.9, 198.2, 199.4. |
Tags: 4-Aminobenzoic acid | Carboxylic Acids | Drug Standard | Aryls | Amines | Organic Building Blocks | Drug Analysis | 150-13-0
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL