Structure of Biotin-PFP ester
CAS No.: 120550-35-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Adams, Milo A ; Kincade, Jack A ; Runyan, Elle C ; Torraco, Ashley N ;
Abstract: Group IX metals in the+ 3-oxidation state can be incorporated into [Cp* MCl2] 2 complexes for the design and synthesis of new artificial metalloenzymes for biological functions. While previous studies have applied the more costly and less abundant rhodium-or iridium-(III) metals, use of a cobalt (III) metal center provides a low-cost route to preparing artificial metalloenzymes. Herein, a new metal cofactor is acquired through synthesis of a primary amine-functionalized Cp* ligand and subsequent complexation with a Co (III) metal center. Key signals corresponding to the Cp* and NH2 groups are visible by Fourier Transform Infrared spectroscopy where the aromatic signal of the Cp* and the stretching mode of the primary amine are present in their characteristic regions, supporting the formation of a tentatively assigned bis [dichloro-ⴄ5 (1-ethylamine-2, 3, 4, 5-tetramethylcylopentadienyl)-cobalt (III)]. Biotinylation of this complex would allow for pairing with engineered proteins to foster catalytic C—H activation, improving enzymatic processes in biological and biochemical applications.
Show More >
CAS No. : | 120550-35-8 |
Formula : | C16H15F5N2O3S |
M.W : | 410.36 |
SMILES Code : | [H][C@]12CS[C@@H](CCCCC(=O)OC3=C(F)C(F)=C(F)C(F)=C3F)[C@@]1([H])NC(=O)N2 |
MDL No. : | MFCD09952636 |
InChI Key : | DKTMDBQDSYQUEV-LEJLMFORSA-N |
Pubchem ID : | 11122445 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 27 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.5 |
Num. rotatable bonds | 7 |
Num. H-bond acceptors | 8.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 93.57 |
TPSA ? Topological Polar Surface Area: Calculated from |
92.73 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.56 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.72 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
4.35 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
4.28 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
4.48 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
3.68 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.8 |
Solubility | 0.065 mg/ml ; 0.000158 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-4.32 |
Solubility | 0.0196 mg/ml ; 0.0000477 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-5.81 |
Solubility | 0.000639 mg/ml ; 0.00000156 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.87 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
1.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
4.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.83 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96% | With triethylamine; In N,N-dimethyl-formamide; at 0 - 70℃; for 1h; | D-Biotin (1.00 g, 4.09 mmol) was dissolved in 20 mL DMF at 70 C and allowed to cool to rt. TEA (0.83g, 1.14 mL, 8.19 mmol) was added, followed by pentafluorophenyl trifluoroacetate (1.60 g, 0.98 mL, 5.73 mmol). The reaction was allowed to stir for 1 h at 0 C and became pink. Solvent was reduced to 1 mL in vacuo and the crude material was triturated with cold diethyl ether. The pFp ester product was recovered as a white solid (1.54 g, 96%). Biotin-pFp ester (1.00 g, 2.44 mmol) was dissolved in 10 mL DMF and cooled to 0 C. A flask containing a suspension of NaBH4 (3.4 mmol) in dry DMF (5 mL) was also cooled to 0 C. The pFp-ester was transferred dropwise via a cannula over 15 min and the mixture was stirred at 0 C. The reaction was followed by TLC and upon completion the cold mixture was acidified with 1 N HC1 and reduced to 1 mL in vacuo. The residue was triturated with cold diethyl ether and the product alcohol was recovered as a white solid (0.528 g, 94%). The alcohol (0.528 g, 2.29 mmol) and TEA (0.39 ml, 1.2 eq) were dissolved in DMF (10 mL) and added dropwise to a stirred solution of 4-nitrophenyl chloroformate (4-NCF, 1.38 g, 6.87 mmol, 3.0 eq) in DMF (10 mL) over a period of 1 h at -10C. The reaction mixture was allowed to warm to rt, stirred overnight, and subsequently and reduced to 1 mL in vacuo. The residue was triturated with cold diethyl ether. The nitrophenol carbonate product was recovered as a white solid (0.96 g, 95%). Fmoc-L-Lys-OH (1.03 g, 2.83 mmol, 1.3 eq.) was suspended under argon in anhydrous DMF (10 ml) containing DiPEA (0.50 ml, 1.3 eq.). To this white suspension, a clear solution of the nitrophenol-carbonate (2.18 mmol, 1.0 eq.) in anhydrous DMF (10 mL) was added drop wise under argon at rt over a period of 2 h. The reaction mixture was stirred for additional 4 h at rt, before the solution as acidified to pH 2 with 1 N HC1. All volatiles were evaporated under reduced pressure and the residue was triturated with cold diethyl ether. The crude product was purified by column chromatography (DCM : MeOH 95 : 5 v/v) to give the Fmoc-protected ncAA as a white solid. The Fmoc- protected ncAA was dissolved in 20% piperidine in DMF (5 ml) and stirred for 1 h at r.t.. All volatiles were removed under reduced pressure and the residue was triturated with cold diethyl ether. Drying of the residue in vaccuum yield the pure ncAA as a white powder (0.622 g, 71 %). 1H-NMR (D6-DMSO, 400 MHz): delta = 1.30-1.45 (m, 6H), 1.50-1.65 (m, 4H), 1.85 (m, 2H), 2.65 (d, J = 12.2 Hz, 1H), 2.84 (dd, J= 5.0 Hz, J= 12.2 Hz, 1H), 2.95 (m, 2H), 3.13 (m, 1H), 3.42 (m, 1H), 3.66 (m, 1H), 3.85 (dd, J= 13.8 Hz, J = 1.0 Hz 1H), 3.93 (t, J= 7.5 Hz, 2H), 4.17 (dd, J= 8.2 Hz, J= 7.3 Hz, 1H), 4.35 (dd, J= 8.1 Hz, J= 7.2 Hz, 1H), 7.11 (t, J= 5.4 Hz, 1H), 8.50 (br, 3H), 8.53 (br, 1H), 8.68 (br, 1H).13C-NMR (D6-DMSO, 100 MHz): 13C-NMR (CDCI3, 100 MHz): delta = 171.44, 163.29, 156.82, 64.00, 61.61, 60.35, 59.79, 55.95, 52.28, 39.10, 30.05, 29.35, 29.02, 28.78, 28,73, 25.91, 22.05. HR-MS (C17H31N4O5S): calculated: 403.20097, found: 403.20159. |
81% | Biotin (5 g; 23.1 mmol; 1.0 eq) is suspended in anhydrous DMF (50 ml) and pyridine (2.07 ml; 25.4 mmol; 1.1 eq). After stirring for 5 minutes, pentafluorophenyl trifluoroacetate (PFP-TFA: 4.621 ml, i.e. 7.50 g; 25.4 mmol; 1.1 eq) is added. After stirring for one night, the reaction is finished, and the solvents are evaporated on the rotary evaporator. The evaporation residue is taken up in 100 ml of ethyl ether to suspend it, then filtered off on a fritted filter, and the cake is rinsed with a minimum of ether. Note: in the TLC a small trace of biotin is observed, but that will have no impact on what follows. m=7.106 g. Yield: 81%. TLC eluent: DCM/MeOH: 90/10. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
90% | With 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 0 - 20℃;Inert atmosphere; | Biotin (2.95 g, 12.00 mmol) was dissolved in DMF (10 mL), and Pfp-OH (2.80 g, 15.20 mmol) was added to the biotin solution before EDC.HCl (5.70 g, 29.70 mmol) in DMF (15 mL) were added to the mixture at 0 C over 30 min. The mixture stirred overnight at room temperature under nitrogen atmosphere. The product washed with DCM. White powder was obtained with a yield of 90% (4.50 g). The product was used in the next step without further purification. 1H NMR (D2O): d 1.41-1.69 (m, 6H, CH2), 2.57 (d, 1H,CH2), 2.77-2.85 (m, 3H, CH2), 3.11-3.12 (m, 1H, CH), 4.14 (t, 1H, CH), 4.30 (t, 1H, CH), 6.37 (d, 2H, NH). |
With dicyclohexyl-carbodiimide; In N,N-dimethyl-formamide; at 20℃; | EXAMPLE lO[D-(+)-biotinyl]-L-aspartate alpha-benzyl ester (14)To a suspension of D-Biotin (2.0 g, 8.19 mmol) in DMF (52 mL) was added pentafluorophenol (1.6 g, 15.6 mmol) followed by DCC (2.5 g, 12.3 mmol). The reaction mixture was allowed to stir, under nitrogen atmosphere, overnight at RT. The reaction mixture remained a suspension and was filtered off and concentrated. The residue was taken up into Et2theta and stirred for several minutes after which the suspension was filtered an dried und vacuum to give a white solid (2.58 g) ESI-MS: 411 [M+H]+. The solid was dissolved in DMF (90 mL) and Et3N (1.24 mL, 8.82 mmol, 1.4 equiv.) was added. H-Asp-OBn was added in portions as a solid. After approximately 15 min the reaction mixture became clear and an additional 2h stirring was allowed. The reaction mixture was concentrated under reduced pressure and water was added followed by MeOH (3:1). The solid formed was filtered off, washed with Et2theta and dried under vacuum to give compound 14 as a white solid (2.92 g, 77 %) ESI-MS: 450 [M+H]+. |
A604708 [2044704-44-9]
N,N-Dimethyl-2-(perfluorophenoxy)ethanamine
Similarity: 0.53
A195613 [169507-61-3]
2,4,5-Trifluoro-3-ethoxybenzoic acid
Similarity: 0.51
A212345 [33755-53-2]
4-Nitrophenyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate
Similarity: 0.66
A604708 [2044704-44-9]
N,N-Dimethyl-2-(perfluorophenoxy)ethanamine
Similarity: 0.53
A195613 [169507-61-3]
2,4,5-Trifluoro-3-ethoxybenzoic acid
Similarity: 0.51
A212345 [33755-53-2]
4-Nitrophenyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate
Similarity: 0.66
A291733 [72040-64-3]
6-(5-((3aS,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid
Similarity: 0.53
A212345 [33755-53-2]
4-Nitrophenyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate
Similarity: 0.66
A212345 [33755-53-2]
4-Nitrophenyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate
Similarity: 0.66
A291733 [72040-64-3]
6-(5-((3aS,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid
Similarity: 0.53