Structure of 1694-31-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Gülten ; Şirin ; Gezer ; Ufuk ; Gündoğan ; Elmas A.
Abstract: Tetrahydropyrimidine (THPM) synthesis has an enormous importance in organic chemistry and especially in pharmaceutical applications. Pyrimidines are the most active class of N-containing heterocyclic compounds and have different biological properties. The heterocyclic ring system with a thio group occupy a unique position in medicinal chemistry. This type of compounds play an important role in synthetic drugs and in biological processes. Dihydropyrimidinethione derivatives occur widely in nature. Several modifications of THPM-5-carboxamides have attracted considerable interest of medicinal chemists due to their pharmacological and therapeutic properties. A series of 1,2,3,4-tetrahydro- 2-pyrimidinone/thione derivatives bearing a phenylcarbamoyl group at C-5 position were synthesized by one-pot three-component Biginelli condensation reaction. The reaction of acetoacetanilide as the 1,3-dicarbonyl component with various aromatic aldehydes and urea/thiourea in the presence of a catalytic amount of p-toluenesulfonic acid monohydrate (PTSA·H2O) or concentrated HCl as an efficient catalyst leads to Biginelli compounds. We have prepared eight THPM 5-carboxamide derivatives, four of them are new compounds. Their structures were confirmed by spectroscopic techniques and elemental analysis. These compounds have potential applications in organic synthesis and medicinal chemistry. We have synthesized a series of THPM-5-carboxamides by simple and efficient threecomponent Biginelli condensation reaction. Significant benefits of the present procedure include: a) application of inexpensive, non-toxic, environmentally friendly and easily available catalysts, b) the reactions are easy to carry out without high temperature and the workup is very simple, c) the required reaction times are relatively short (30-80 min with HCl and 8-24 h with PTSA·H2O), d) compatibility with various functional groups, e) the products are isolated in good to excellent yields (50-95%).
Show More >
CAS No. : | 1694-31-1 |
Formula : | C8H14O3 |
M.W : | 158.20 |
SMILES Code : | CC(CC(OC(C)(C)C)=O)=O |
MDL No. : | MFCD00008811 |
InChI Key : | JKUYRAMKJLMYLO-UHFFFAOYSA-N |
Pubchem ID : | 15538 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.75 |
Num. rotatable bonds | 4 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 42.09 |
TPSA ? Topological Polar Surface Area: Calculated from |
43.37 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.08 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.95 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.31 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.97 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.22 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.31 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.16 |
Solubility | 11.1 mg/ml ; 0.0699 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.45 |
Solubility | 5.64 mg/ml ; 0.0357 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.51 |
Solubility | 4.92 mg/ml ; 0.0311 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.59 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.61 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
lH-Pyrazol-4-amine (10.4 g, 125 mmol) was dissolved in concentrated HCl (36.8 mL)/water (186 mL) and cooled to 0C. A solution of sodium nitrite (9.05g, 131 mmol) in water (122 mL) was added dropwise while maintaining the internal temperature below 4C. On complete addition, the mixture was stirred at 0C for 30 min. The resulting diazonium chloride solution was added via a pipette to a solution of tert-butyl acetoacetate (21.8 mL, 131 mmol) and sodium acetate (124 g, 1.51 mol) in water (122 mL) and EtOH (122 mL) at 0C. The resulting mixture was stirred between 0-1 C for two hours. The solid was filtered and dried in-vacuo to afford terf -butyl 3-oxo-2-[lH-pyrazol-4-yldiazenyl]butanoate as a yellow-brownish powder. LRMS (ESI) calc'd for CI 1Eta17Nu403 [M+H]+: 253, Found: 253. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
A solution of <strong>[652-40-4]3,6 difluorophthalic anhydride</strong> (4.25 g, 23.1 mmol), tert-butyl 3-oxobutanoate (4.29 mL, 25.9 mmol) and acetic anhydride (21.0 mL, 221.6 mmol) at 25 °C was treated with triethylamine (1 1.7 mL, 84.3 mmol) and stirred at ambient temperature for 18 hours. The reaction mixture was cooled to 0 °C and treated with 10percent hydrochloric acid (65 mL, 21 1 mmol) by dropwise addition. Once the addition was complete, the ice bath was removed and the mixture stirred at ambient for 10 minutes. The mixture was then heated to 75 °C for 10 minutes. During this time gas evolution was observed. The suspension slowly broke up to form a clear red mixture. The reaction mixture was poured into 100 mL of water and extracted with 3 x 50 mL CH2C12. The combined organics were dried with MgS04, filtered, and concentrated to dryness. The product was used without further purification. | ||
With acetic anhydride; triethylamine; at 0 - 25℃; for 18h; | A solution of <strong>[652-40-4]3,6 difluorophthalic anhydride</strong> (4.25 g, 23.1 mmol), tert-butyl 3-oxobutanoate (4.29 mL, 25.9 mmol) and acetic anhydride (21.0 mL, 221.6 mmol) at 25 °C was treated with triethylamine (11.7 mL, 84.3 mmol) and stirred at ambient temperature for 18 hours. The reaction mixture was cooled to 0 °C and treated with 10percent hydrochloric acid (65 mL, 211 mmol) by dropwise addition. Once the addition was complete, the ice bath was removed and the mixture stirred at ambient for 10 minutes. The mixture was then heated to 75 °C for 10 minutes. During this time gas evolution was observed. The suspension slowly broke up to form a clear red mixture. The reaction mixture was poured into 100 mL of water and extracted with 3 x 50 mL CH2C12. The combined organics were dried with MgS04, filtered, and concentrated to dryness. The product was used without further purification. | |
With acetic anhydride; triethylamine; at 20 - 25℃; for 18h; | A solution of <strong>[652-40-4]3,6 difluorophthalic anhydride</strong> (4.25 g, 23.1 mmol), tert-butyl 3-oxobutanoate (4.29 mL, 25.9 mmol) and acetic anhydride (21.0 mL, 221.6 mmol) at 25 °C was treated with triethylamine (11.7 mL, 84.3 mmol) and stirred at ambient temperature for 18 hours. The reaction mixture was cooled to 0 °C and treated with 10percent hydrochloric acid (65 mL, 211 mmol) by dropwise addition. Once the addition was complete, the ice bath was removed and the mixture stirred at ambient for 10 minutes. The mixture was then heated to 75 °C for 10 minutes. During this time gas evolution was observed. The suspension slowly broke up to form a clear red mixture. The reaction mixture was poured into 100 mL of water and extracted with 3 x 50 mL CH2Cl2. The combined organics were dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification. |
With hydrogenchloride; acetic anhydride; triethylamine; | Step A: Preparation of 4,7-difluoro-1H-indene-1,3(2H)-dione A solution of <strong>[652-40-4]3,6 difluorophthalic anhydride</strong> (4.25 g, 23.1 mmol), tert-butyl 3-oxobutanoate (4.29 mL, 25.9 mmol) and acetic anhydride (21.0 mL, 221.6 mmol) at 25° C. was treated with triethylamine (11.7 mL, 84.3 mmol) and stirred at ambient temperature for 18 h. The reaction mixture was cooled to 0° C. and treated with 10percent hydrochloric acid (65 mL, 211 mmol) by dropwise addition. Once the addition was complete, the ice bath was removed and the mixture stirred at ambient for 10 minutes. The mixture was then heated to 75° C. for 10 minutes. During this time gas evolution was observed. The suspension slowly broke up to form a clear red mixture. The reaction mixture was poured into 100 mL of water and extracted with 3*50 mL CH2Cl2. The combined organics were dried with MgSO4, filtered, and concentrated to dryness. The product was used without further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In acetonitrile; at 120℃; for 2h;Sealed tube; | tert-Butyl acetoacetate (1.82 ml, 11 mmol) and <strong>[23687-26-5]isoquinoline-6-amine</strong> (1.44 g, 10 mmol) in MeCN (10 ml) were sealed in a reaction tube and heated to 120° C. for 2 h. The reaction mixture was evaporated then triturated with a mixture of MeCN and diethyl ether to give an off-white solid (1.50 g). Although this material contained approximately 10percent SM, it was used in the next step without further purification. LCMS (Method 3): Rt=0.46 min, m/z 229 [M+H]+ |
A327918 [15026-17-2]
4-(tert-Butoxy)-4-oxobutanoic acid
Similarity: 0.87
A217434 [82578-45-8]
(S)-tert-Butyl 3-hydroxybutanoate
Similarity: 0.84
A107224 [843666-40-0]
18-(tert-Butoxy)-18-oxooctadecanoic acid
Similarity: 0.84
A327918 [15026-17-2]
4-(tert-Butoxy)-4-oxobutanoic acid
Similarity: 0.87
A217434 [82578-45-8]
(S)-tert-Butyl 3-hydroxybutanoate
Similarity: 0.84
A107224 [843666-40-0]
18-(tert-Butoxy)-18-oxooctadecanoic acid
Similarity: 0.84
A207849 [7152-15-0]
Ethyl 4-methyl-3-oxopentanoate
Similarity: 0.82