Home Cart Sign in  
Chemical Structure| 683239-16-9 Chemical Structure| 683239-16-9

Structure of 683239-16-9

Chemical Structure| 683239-16-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 683239-16-9 ]

CAS No. :683239-16-9
Formula : C24H46O4
M.W : 398.62
SMILES Code : O=C(O)CCCCCCCCCCCCCCCCCCC(OC(C)(C)C)=O
MDL No. :MFCD23136041
InChI Key :JUCDAUSILDWYOA-UHFFFAOYSA-N
Pubchem ID :59769800

Safety of [ 683239-16-9 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 683239-16-9 ] Show Less

Physicochemical Properties

Num. heavy atoms 28
Num. arom. heavy atoms 0
Fraction Csp3 0.92
Num. rotatable bonds 21
Num. H-bond acceptors 4.0
Num. H-bond donors 1.0
Molar Refractivity 120.58
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

63.6 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

5.42
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

8.83
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

7.43
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

4.98
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

7.61
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

6.85

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-6.49
Solubility 0.000129 mg/ml ; 0.000000325 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-10.05
Solubility 0.0000000356 mg/ml ; 0.0000000001 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Insoluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-7.36
Solubility 0.0000173 mg/ml ; 0.0000000435 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

Low
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-2.46 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

1.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

1.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

1.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.56

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<3.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

3.5

Application In Synthesis of [ 683239-16-9 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 683239-16-9 ]

[ 683239-16-9 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 683239-16-9 ]
  • C49H47N2O6Pol [ No CAS ]
  • [ 84793-07-7 ]
  • [ 79-08-3 ]
  • [ 188715-40-4 ]
  • [ 166108-71-0 ]
  • 20-[[4-[[(1S)-4-[2-[2-[2-[2-[2-[2-[[(1S)-5-[(2-bromoacetyl)amino]-1-carboxypentyl]amino]-2-oxoethoxy]ethoxy]ethylamino]-2-oxoethoxy]ethoxy]ethylamino]-1-carboxy-4-oxobutyl]carbamoyl]cyclohexyl]methylamino]-20-oxoicosanoic acid [ No CAS ]
YieldReaction ConditionsOperation in experiment
98% Synthetic protocol: Wang Fmoc-Lys(Mtt) resin 0.26 mmol/g (1, 11.2 g, 2.90 mmol) was left to swell in dichloromethane (100 ml) for 45 minutes. Fmoc group was removed by treatment with 20% piperidine in N,N-dimethylformamide (1 x 5 min, 1 x 10 min, 1 x 30 min, 3 x 100 15 ml). Resin was washed with N,N-dimethylformamide (3 x 90 ml), 2-propanol (3 x 90 ml) and dichloromethane (3 x 90 ml). A solution of {2-[2-(9H-fluoren-9ylmethoxycarbonylamino)-ethoxy]-ethoxy}-acetic acid (Fmoc-OEG-OH, 2.23 g, 5.80 mmol), 0-(6-chlorobenzotriazol-1-yi)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TCTU, 2.06 g, 5.80 mmol) and N,N-diisopropylethylamine (2.02 ml, 11.6 mmol) in N,N20 dimethylformamide (100 ml) was added to resin and the mixture was shaken for 1 hour. Resin was filtered and washed with N,N-dimethylformamide (3 x 90 ml), dichloromethane (3 x 90 ml) and N,N-dimethylformamide (3 x 90 ml). Fmoc group was removed by treatment with 20% piperidine in N,N-dimethylformamide (1 x 5 min, 1 x 10 min, 1 x 30 min, 3 x 100 ml). Resin was washed with N,N-dimethylformamide (3 x 90 25 ml), 2-propanol (3 x 90 ml) and dichloromethane (3 x 90 ml). Solution of {2-[2-(9Hfluoren-9-ylmethoxycarbonylamino)-ethoxy]-ethoxy}-acetic acid (Fmoc-OEG-OH, 2.23 g, 5.80 mmol), 0-(6-chloro-benzotriazol-1-yi)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TCTU, 2.06 g, 5.80 mmol) and N,N-diisopropylethylamine (2.02 ml, 11.6 mmol) in N,N-dimethylformamide (100 ml) was added to resin and mixture was 30 shaken for 1.5 hour. Resin was filtered and washed with N,N-dimethylformamide (3 x 90ml), dichloromethane (3 x 90 ml) and N,N-dimethylformamide (3 x 90 ml). Fmoc group was removed by treatment with 20% piperidine in N,N-dimethylformamide (1 x 5 min, 1 x 10 min, 1 x 30 min, 3 x 100 ml). Resin was washed with N,N-dimethylformamide (3 x 90 ml), 2-propanol (3 x 90 ml) and dichloromethane (3 x 90 ml). Solution of (S)-2-(9H5 fluoren-9-ylmethoxycarbonylamino)-pentanedioic acid 1-tert-butyl ester (Fmoc-LGiuOtBu, 1.85 g, 4.35 mmol), 0-(6-chloro-benzotriazol-1-yi)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TCTU, 1.55 g, 4.35 mmol) and N,N-diisopropylethylamine (1.36 ml, 7.82 mmol) in N,N-dimethylformamide (100 ml) was added to resin and mixture was shaken for 1.5 hour. Resin was filtered and washed with N,N-dimethylformamide (3 x 90 10 ml), dichloromethane (3 x 90ml) and N,N-dimethylformamide (3 x 90 ml). Fmoc group was removed by treatment with 20% piperidine in N,N-dimethylformamide (1 x 5 min, 1 x 10 min, 1 x 30 min, 3 x 100 ml). Resin was washed with N,N-dimethylformamide (3 x 90 ml), 2-propanol (3 x 90 ml) and dichloromethane (3 x 90 ml). Solution of <strong>[188715-40-4]4-[(9H-fluoren-9-ylmethoxycarbonylamino)methyl]cyclohexanecarboxylic acid</strong> 15 (<strong>[188715-40-4]Fmoc-Trx-OH</strong>, 1.65 g, 4.35 mmol), 0-(6-chloro-benzotriazol-1-yi)-N,N,N',N'tetramethyluronium tetrafluoroborate (TCTU, 1.55 g, 4.35 mmol) and N,Ndiisopropylethylamine (1.36 ml, 7.82 mmol) in N,N-dimethylformamide (100 ml) was added to resin and mixture was shaken for 2 hours. Resin was filtered and washed with N,N-dimethylformamide (3 x 90 ml), dichloromethane (3 x 90ml) and N,N20 dimethylformamide (3 x 90 ml). Fmoc group was removed by treatment with 20% piperidine in N,N-dimethylformamide (1 x 5 min, 1 x 10 min, 1 x 30 min, 3 x 100 ml). Resin was washed with N,N-dimethylformamide (3 x 90 ml), 2-propanol (3 x 90 ml) and dichloromethane (3 x 90 ml). Solution of icosanedioic acid mono-tert-butyl ester (C20(0tBu)-OH, 1. 73 g, 4.35 mmol), 0-(6-chloro-benzotriazol-1-yi)-N,N,N',N'25 tetramethyluronium tetrafluoroborate (TCTU, 1.55 g, 4.35 mmol) and N,Ndiisopropylethylamine (1.36 ml, 7.82 mmol) in N,N-dimethylformamide (100 ml) was added to resin and mixture was shaken for 2 hours. Resin was filtered and washed with N,N-dimethylformamide (3 x 90 ml), dichloromethane (3 x 90 ml), N,Ndimethylformamide (3 x 90 ml) and dichloromethane (3 x 90 ml). Mtt group was 30 removed by treatment with 80% 1,1,1,3,3,3-hexafluoro-2-propanol in dichloromethane (2 x 10 min, 2 x 30 min, 4 x 100 ml). Resin was washed with dichloromethane (6 x 90 ml) and N,N-dimethylformamide (3 x 90 ml). Solution of bromoacetic acid (8.06 g, 58.0 mmol) and N,N '-diisopropylcarbodiimide (DIC, 7.60 ml, 49.3 mmol) in N,Ndimethylformamide (100 ml) was added to resin and mixture was shaken for 40 35 minutes. Resin was filtered and washed with N,N-dimethylformamide (5 x 90 ml) and dichloromethane (12 x 90 ml). The product was cleaved from resin by treatment with trifluoroacetic acid (100 ml) for 1 hour. Resin was filtered off and washed with trifluoroacetic acid (1 x 50 ml) and dichloromethane (7 x 70 ml). Solutions were combined and solvents were evaporated to dryness giving a thick brownish oil. Yield: 3.28 g (98%). 5 1H NMR spectrum (300 MHz, Ac0D-d4, 80 C, dH): 4.68 (dd, J=8.0 and 5.4 Hz, 1 H); 4.60 (dd, J=7.9 and 5.3 Hz, 1 H); 4.16 (s, 2 H); 4.12 (s, 2 H); 3.94 (s, 2 H); 3.81-3.61 (m, 12 H); 3.59-3.44 (m, 4 H); 3.32 (t, J=6.8 Hz, 2 H); 3.14 (d, J=6.8 Hz, 2 H); 2.491.79 (m, 15 H)...
  • 2
  • [ 683239-16-9 ]
  • [ 1172127-44-4 ]
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2,4-dimethylpentanoic acid [ No CAS ]
  • [ 84793-07-7 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-35-0 ]
  • [ 47375-34-8 ]
  • [ 71989-20-3 ]
  • [ 94744-50-0 ]
  • [ 104091-08-9 ]
  • [ 76-05-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 166108-71-0 ]
  • Y-Aib-EGT-αMeF(2F)-TSDYSI-αMeL-LDEK((2-[2-(2-aminoethoxy)ethoxy]acetyl)<SUB>2</SUB>-(γ-Glu)-CO-(CH2)<SUB>18</SUB>-CO<SUB>2</SUB>H)AQ-Aib-EFI-(D-Glu)-YLIEGGPSSGAPPPS-NH<SUB>2</SUB><SUB> trifluoroacetic acid salt</SUB> [ No CAS ]
YieldReaction ConditionsOperation in experiment
The peptide backbone of Example 1 is synthesized using Fluorenylmethyloxycarbonyl (Fmoc)/tert-Butyl (t-Bu) chemistry on a Symphony X peptide synthesizer (Gyros Protein Technologies. Tucson, Ariz.). The resin consists of 1% DVB cross-linked polystyrene (Fmoc-Rink-MBHA Low Loading resin, 100-200 mesh, EMD Millipore) at a substitution of 0.3-0.4 meq/g. Standard side-chain protecting groups were used. Fmoc-Lys(Mtt)-OH is used for the lysine at position 17 and Boc-Tyr(tBu)-OH) was used for the tyrosine at position 1. Fmoc groups are removed prior to each coupling step (2×7 minutes) using 20% piperidine in DMF. All standard amino acid couplings are performed for 1 hour to a primary amine and 3 hour to a secondary amine, using an equal molar ratio of Fmoc amino acid (0.3 mM), diisopropylcarbodiimide (0.9 mM) and Oxyma (0.9 mM), at a 9-fold molar excess over the theoretical peptide loading. Exceptions are couplings to Calpha-methylated amino acids, which are coupled for 3 hours. After completion of the synthesis of the peptide backbone, the resin is thoroughly washed with DCM for 6 times to remove residual DMF. The Mtt protecting group on the lysine at position 17 is selectively removed from the peptide resin using two treatments of 300 hexafluoroisopropanol (Oakwood Chemicals) in DCM (2×40-minute treatment). Subsequent attachment of the fatty acid-linker moiety is accomplished by coupling of 2-[2-(2-Fmoc-amino-ethoxy)-ethoxy]-acetic acid (Fmoc-AEEA-OH, ChemPep, Inc.), Fmoc-glutamic acid alpha-t-butyl ester (Fmoc-Glu-OtBu, Ark Pharm, Inc.), mono-OtBu-eicosanedioic acid (WuXi AppTec, Shanghai, China). 3-Fold excess of reagents (AA:PyAOP:DIPEA=1:1:1 mol/mol) are used for each coupling that is 1-hour long. After the synthesis is complete, the peptide resin is washed with DCM, and then thoroughly air-dried. The dry resin is treated with 10 mL of cleavage cocktail (trifluoroacetic acid:water:triisopropylsilane, 95:2.5:2.5 v/v) for 2 hours at room temperature. The resin is filtered off, washed twice each with 2 mL of neat TFA, and the combined filtrates are treated with 5-fold excess volume of cold diethyl ether (-20 C.) to precipitate the crude peptide. The peptide/ether suspension is then centrifuged at 3500 rpm for 2 min to form a solid pellet, the supernatant is decanted, and the solid pellet is triturated with ether two additional times and dried in vacuo. The crude peptide is solubilized in 20% acetonitrile/20% Acetic acid/60% water and purified by RP-HPLC on a Luna 5 mum Phenyl-Hexyl preparative column (21*250 mm, Phenomenex) with linear gradients of 100% acetonitrile and 0.1% TFA/water buffer system (30-50% acetonitrile in 60 min). The purity of peptide is assessed using analytical RP-HPLC and pooling criteria is >95%. The main pool purity of compound 1 is found to be 98.0%. Subsequent lyophilization of the final main product pool yielded the lyophilized peptide TFA salt. The molecular weight is determined by LC-MS (obsd. M+3=1657.2; Calc M+3=1657.0).
 

Historical Records

Categories

Similar Product of
[ 683239-16-9 ]

Chemical Structure| 843666-40-0

A107224 [843666-40-0]

18-(tert-Butoxy)-18-oxooctadecanoic acid

Reason: Derivatives