Structure of 16096-32-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 16096-32-5 |
Formula : | C9H9N |
M.W : | 131.17 |
SMILES Code : | CC1=CC=CC2=C1C=CN2 |
MDL No. : | MFCD00005668 |
InChI Key : | PZOUSPYUWWUPPK-UHFFFAOYSA-N |
Pubchem ID : | 85282 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 9 |
Fraction Csp3 | 0.11 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 43.26 |
TPSA ? Topological Polar Surface Area: Calculated from |
15.79 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.66 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.41 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.48 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.89 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.06 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.3 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.84 |
Solubility | 0.191 mg/ml ; 0.00145 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.38 |
Solubility | 0.542 mg/ml ; 0.00413 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.63 |
Solubility | 0.0305 mg/ml ; 0.000232 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.39 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.01 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
74% | General procedure: The Vilsmeier-Haack reagent was prepared by adding POCl3 (60 mmol, 6 mL) dropwise to ice-cold dry DMF (30 mL) whilst stirring. The mixture was then stirred for 10-15 min at 0 C. Compound 3b or 3e (10 mmol) was added as a solution in DMF (5 mL) to the above Vilsmeier-Haack reagent. The stirred mixture was then heated at 35 C for 1 h. After cooling, ice water (6 mL) and a 30% aqueous solution of NaOH (13 mL) were added successively, and the mixture was heated at reflux for 20 min and allowed to cool. The mixture was extracted with CH2Cl2 (20 mL*3). The extracts were dried over Na2SO4, evaporated under reduced pressure to remove the solvent, and the crude product was purified by flash column chromatography using 15-25% acetone/petroleum ether (60-90 C) as eluent to give the corresponding intermediate compound 4b or 4e, respectively. | |
With trichlorophosphate; at 0 - 20℃;Inert atmosphere; | Procedure for Vilsmeiere-Haack reaction followed by LiAlH4 reduction was adapted from Petit et al.16 In a flame-dried flask under nitrogen, POCl3 (0.42 mL, 4.6 mmol) was added at 0 C to 4-methyl-1H-indole (0.5 g, 3.8 mmol) in DMF (7.6 mL). The reaction was stirred at room temperature overnight. 2 N NaOH(aq) was then added, the solution was stirred for 2 h, then poured into EtOAc. The organic layer was washed with brine, dried (Na2SO4), filtered, and concentrated. The crude aldehyde was carried forward without further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | With iodine; oxygen; pyrographite; In N,N-dimethyl-formamide; at 120℃; for 1.5h; | General procedure: A 50 mL round bottom flask equipped with a magnetic stirring bar was charged with substituted indole 1 (1.0 mmol, 1.0 equiv), HMTA (2.0 mmol, 0.2803 g, 2.0 equiv), activated carbon (0.1 g) and DMF (2 mL). Then I2 (0.2 mmol, 0.0507g, 20 mol%) was added and the flask was equipped with a reflux condenser. The reaction mixture was stirred at 120 oC under open air and monitored by TLC. Upon completion of the reaction, the reaction mixture was cooled to room temperature. The resultant mixture was filtered through a pad of celite and the filter cake was washed thoroughly with EtOAc (4 × 6 mL). The filtrate was washed with 0.5 M aqueous HCl (10 mL), saturated NaHCO3 solution (10 mL) and saturated NaCl solution ( 10 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with hexane and ethyl acetate to give the product. |
78% | With aluminum (III) chloride; In N,N-dimethyl-formamide; at 120℃; for 2.4h; | General procedure: A method for synthesizing compound III-1 wherein R1, R2 and R3 are simultaneously hydrogen in the formula III, the method comprising the steps of:(1) Add to a 50 mL round bottom flask1.0mmol indole(In the formula I, R1, R2, and R3 are both hydrogen) and1.0 mmol (0.140 g) of hexamethylenetetramine, then 2 mL of N,N-dimethylformamide (DMF), stirred in a magnetic stirrer to dissolve the solid, followed by the addition of 0.05 mmol (0.012 g) of crystalline trichloride Aluminum, connected to a reflux condenser, heated at 120 C, the reaction progress was monitored by TLC, and the reaction was cooled to room temperature after 1 h to prepare a suspension;(2) The suspension prepared in the step (1) is suction filtered with a funnel padded with diatomaceous earth.The filter cake was washed well with ethyl acetate, suction filtered, and the above operation was repeated until the filtrate had no product, and all the filtrates were combined.Dilute with 15 mL of saturated saline solution, disperse and separate the layers, and the aqueous layer was further extracted with ethyl acetate three times.Each time 10 mL, the ethyl acetate layer was combined and washed with 10 mL of 2 mol/L diluted hydrochloric acid.Wash with 10 mL of saturated sodium bicarbonate solution, and finally wash with 10 mL of saturated brine.The washed ethyl acetate layer was dried over anhydrous sodium sulfate, and after drying, the desiccant was filtered off.Then use a rotary evaporator to recover the solvent to concentrate the product, and finally,The residue is subjected to silica gel column chromatography using a mixture of n-hexane-ethyl acetate (V/V = 2:1) as an eluent to obtain a purified product.The mass of the compound III-indole-3-carbaldehyde is 0.137g,The product yield was 94%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
79% | With iron(III) chloride; ammonia; In water; N,N-dimethyl-formamide; at 130℃; for 2h; | General procedure: A 50 mL round-bottomed flask equipped with a magnetic stirringbar was charged with the appropriate indole 1 (0.5 mmol,1.0 equiv), 37% aq HCHO (0.5 mmol, 0.0406 g, 1.0 equiv), 25% aqNH3 (1.0 mmol, 0.0681 g, 2.0 equiv), FeCl3 (0.01 mmol, 0.0016 g,2 mol%), and DMF (2 mL). The flask was fitted with a reflux condenser,and the mixture was stirred at 130 C under open air.When the reaction was complete (TLC), the mixture was cooledto r.t., diluted with sat. aq NaCl (10 mL) and 0.5 M aq HCl (2 mL),and extracted with EtOAc (3 x 7 mL). The organic layers werecombined, washed with sat. aq NaHCO3 (10 mL) and sat. aq NaCl(10 mL), dried (Na2SO4), and concentrated under reduced pressure.The residue was purified by flash column chromatography(silica gel, hexane-EtOAc). |