Structure of 80041-89-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 80041-89-0 |
Formula : | C3H9BO2 |
M.W : | 87.91 |
SMILES Code : | CC(B(O)O)C |
MDL No. : | MFCD01319021 |
InChI Key : | QIPHSSYCQCBJAX-UHFFFAOYSA-N |
Pubchem ID : | 2734750 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 6 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 1.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 25.67 |
TPSA ? Topological Polar Surface Area: Calculated from |
40.46 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.5 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
-0.13 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.63 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-1.84 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
-0.42 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.63 |
Solubility | 20.4 mg/ml ; 0.232 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.92 |
Solubility | 10.6 mg/ml ; 0.12 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
0.51 |
Solubility | 283.0 mg/ml ; 3.22 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.48 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.27 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | In diethyl ether; at 23℃; for 16h;Inert atmosphere; | Into a 250 mL round-bottom flask equipped with a magnetic stir bar and under nitrogen was weighed isopropyl boronic acid (12.5 g, 142 mmol, 1.1 equiv). The solid was taken up in diethyl ether (100 mL), affording a yellow suspension. To this suspension was added over 4 equal portions (1S,2S,3R,5S)-2,6,6-trimethylbicyclo[3 .1.1 ]heptane-2,3 -diol (22.0 g, 129 mmol, 1.0 equiv) [NOTE: Slight exotherm observed]. The resulting yellow suspension became a light white opaque solution. The reaction mixture was stirred for 16 h. The mixture was concentrated under reduced pressure and the crude yellow oil poured onto a pad of silica gel (10 cm wide x 6 cm high) on a sintered glass funnel and the product eluted with 2% EtOAc in hexanes (500 mL). The clear filtrate was concentration under reduced pressure to afford a clear oil (23.7 g, 83%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
a) Preparation of isopropylboronic acid A solution of 149 g of triethyl borate (1 mol) in 300 cm3 of ether and a 2M solution of 103 g of isopropylmagnesium chloride (1 mol) in 500 cm3 of ether, are added simultaneously, under a nitrogen atmosphere and with vigorous stirring, into ethyl ether (500 cm3) stirred under nitrogen at -78° C., while maintaining the temperature below -70° C. for 2 hours. The temperature of the reaction mixture is allowed to rise to room temperature and stirring is continued for a further 24 hours. The mixture is then acidified with cold dilute 40percent sulphuric acid (250 cm3) and is stirred. while maintaining the temperature below 15° C. Stirring is carried out for a further 16 hours and the mixture is diluted again with water (250 cm3) in order to remove the emulsion. The ether phase is separated out and the aqueous phase is extracted with ether (3*200 cm3). The ether phases are combined, dried (magnesium sulphate) and then concentrated. The resulting solid is crystallized from water. The desired product is obtained (wet); this product needs to be kept wet or in ether in order to prevent autoxidation. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; In tetrahydrofuran; | g. 2-Isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolidine. A dry, 5 L, three-necked flask was equipped with a mechanical stirrer, a Claisen adapter holding a low-temperature thermometer and an addition funnel, and a second Claisen adapter holding an addition funnel and a nitrogen inlet. Isopropylmagnesium chloride (1.60 L, 2.0M in tetrahydrofuran) was transferred via cannula into one addition funnel, and triethylborate (467.1 g) was placed into the other addition funnel. Tetrahydrofuran (1 L) was placed in the reaction flask and was cooled to -78° C. The triethylborate and the Grignard reagent were simultaneously added dropwise over a 2 hour period, while maintaining an internal temperature of less than -50° C. Upon completion of the addition, the mixture was stirred for an additional 2 hours at -78° C. The reaction was quenched by dropwise addition of concentrated hydrochloric acid (600 mL) over 1 hour. The temperature of the mixture rose from -78° C. to -20° C., and the dark amber solution became colorless. The mixture was stirred overnight, evaporated, and extracted with ether. The combined extracts were washed with brine and dried (MgSO4). Evaporation gave crude (dihydroxy)isopropylborane as a white semi-solid (360.2 g). This material was dissolved in ethyl acetate (1 mL) and the solution was placed in a 3 L, 3-necked flask equipped with a mechanical stirrer and a nitrogen inlet. |