There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Yuan, Gengyang ; Dhaynaut, Maeva ; Lan, Yu ; Guehl, Nicolas J. ; Huynh, Dalena ; Iyengar, Suhasini M. , et al.
Abstract: Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/μmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.
Show More >
Purchased from AmBeed: 16289-54-6 ; 5521-55-1 ; 22047-25-2 ; 98-80-6 ; 40155-47-3 ; 5720-05-8 ; 879-65-2 ; 98-96-4 ; 31519-62-7 ; 23688-89-3 ; 23611-75-8 ; 33332-25-1 ; 20737-42-2 ; 61442-38-4 ; 17933-03-8 ; 50681-25-9 ; 13924-99-7 ; 40155-43-9 ; 166744-78-1 ; 36070-80-1 ; 4595-61-3 ; 118853-60-4 ; 41110-28-5 ; 40155-42-8 ; 937669-80-2 ; 31462-59-6 ; 16419-60-6 ; 5424-01-1 ; 59-67-6 ; 34604-60-9 ; 27398-39-6 ; 1196151-53-7 ; 19847-12-2 ; 13965-03-2 ; 876161-05-6 ; 27825-21-4 ; 2164-61-6 ; 4604-72-2 ; 98-97-5 ; 24005-61-6 ; 5521-61-9 ; 2516-34-9 ; 2719-27-9 ; 123-90-0 ; 6761-50-8 ; 625-43-4 ; 872-64-0 ; 1309866-36-1 ; 36932-49-7 ; 1528085-68-8 ; 1195533-51-7 ; 13534-79-7
Show More >
Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents
Hegde, Pooja V. ; Aragaw, Wassihun W. ; Cole, Malcolm S. ; Jachak, Gorakhnath ; Ragunathan, Priya ; Sharma, Sachin , et al.
Abstract: Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the CoA biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative mols. were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic anal. of these analogs may lead to a next generation POA analog for treating TB.
Show More >
Keywords: Tuberculosis ; Pyrazinoic acid ; pyrazinamide
Show More >
Purchased from AmBeed: 16289-54-6 ; 5521-55-1 ; 22047-25-2 ; 98-80-6 ; 40155-47-3 ; 5720-05-8 ; 879-65-2 ; 98-96-4 ; 31519-62-7 ; 23688-89-3 ; 23611-75-8 ; 33332-25-1 ; 20737-42-2 ; 61442-38-4 ; 17933-03-8 ; 50681-25-9 ; 13924-99-7 ; 40155-43-9 ; 36070-80-1 ; 4595-61-3 ; 118853-60-4 ; 41110-28-5 ; 40155-42-8 ; 937669-80-2 ; 98-98-6 ; 31462-59-6 ; 16419-60-6 ; 5424-01-1 ; 59-67-6 ; 34604-60-9 ; 27398-39-6 ; 1196151-53-7 ; 19847-12-2 ; 13965-03-2 ; 876161-05-6 ; 27825-21-4 ; 2164-61-6 ; 4604-72-2 ; 98-97-5 ; 24005-61-6 ; 103-67-3 ; 5521-61-9 ; 2516-34-9 ; 2719-27-9 ; 123-90-0 ; 6761-50-8 ; 625-43-4 ; 872-64-0 ; 36932-49-7 ; 1528085-68-8 ; 1195533-51-7 ; 13534-79-7
Show More >
CAS No. : | 123-90-0 |
Formula : | C4H9NS |
M.W : | 103.19 |
SMILES Code : | C1CSCCN1 |
MDL No. : | MFCD00005974 |
InChI Key : | BRNULMACUQOKMR-UHFFFAOYSA-N |
Pubchem ID : | 67164 |
GHS Pictogram: |
![]() |
Signal Word: | Danger |
Hazard Statements: | H314 |
Precautionary Statements: | P280-P305+P351+P338-P310 |
Class: | 8 |
UN#: | 3267 |
Packing Group: | Ⅲ |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
87% | With N-ethyl-N,N-diisopropylamine; In tetrahydrofuran; at 50℃; for 2.0h; | 1.0 g (5.27 mmol) 27 are dissolved in 500 pi THF, treated with 612 ul (5.81 mmol) thiomorpholine and 808 pi (4.75 mmol) N-ethyl-N, N-diisopropyl amine and stirred for 2 h at 50C. After customary workup, 1.4 g (87%) 37 (Rt. = 2.93 min (method E) ) is obtained as a brown oil. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
EXAMPLE 36 Using the method of Example 35, thiomorpholine was reacted with <strong>[1005-38-5]4-amino-6-chloro-2-methylthiopyrimidine</strong> to provide 4-amino-2-methylthio-6-(4-thiomorpholino)pyrimidine as a yellow solid, m.p. 144°-145° C. The structural assignment was supported by nuclear magnetic resonance spectral analysis. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
4.5% | 5-Cyano-4,6 -dichloro-2-thiomorpholino-pyrimidine (m.p. 99°C, yield: 4.5percent of theory) from 5-cyano-2,4,6 -trichloro-pyrimidine and thiomorpholine. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
55% | With tris-(dibenzylideneacetone)dipalladium(0); caesium carbonate; 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; In 1,4-dioxane; at 100℃; for 16h;Inert atmosphere; | Add l-bromo-3-nitro-5-(trifluoromethy 0l)benzene (500 mg, 2.9 mmol), thiomorpholine (455 mg, 4.4 mmol), Cs2C03 (2.86 g, 8.8 mmol), BINAP (55 mg, 0.09 mmol) and Pd2(dba)3 (54 mg, 0.06 mmol) under N2 tol,4-dioxane (10 mL), stir the reaction under N2 at 100C for 16 hrs. TLC (100% PE) shows the reaction is complete. Cool the reaction to room temperature, filter and concentrate the filtrate under reduced pressure to get crude product. Purification by chromatography (silica gel, 100% PE) affords the target compound (475 mg, 55%). MS: (M+l): 293.1. |
55% | With tris-(dibenzylideneacetone)dipalladium(0); caesium carbonate; 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; In 1,4-dioxane; at 100℃; for 16h;Inert atmosphere; | Add <strong>[630125-49-4]1-bromo-3-nitro-5-(trifluoromethyl)benzene</strong> (500 mg, 2.9 mmol), thiomorpholine (455 mg, 4.4 mmol), Cs2CO3 (2.86 g, 8.8 mmol), BINAP (55 mg, 0.09 mmol) and Pd2(dba)3 (54 mg, 0.06 mmol) under N2 to 1,4-dioxane (10 mL), stir the reaction under N2 at 100 C. for 16 hrs. TLC (100% PE) shows the reaction is complete. Cool the reaction to room temperature, filter and concentrate the filtrate under reduced pressure to get crude product. Purification by chromatography (silica gel, 100% PE) affords the target compound (475 mg, 55%). MS: (M+1): 293.1. |
1.05 g | With tris-(dibenzylideneacetone)dipalladium(0); caesium carbonate; 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; In 1,4-dioxane; at 45℃; for 4h; | General procedure: To a solution of di-tert-butyl (3-bromo-5-(trifluoromethyl)phenyl)imidodicarbonate (step 1 intermediate) (2.2 g, 4.89 mmol) in 1,4-dioxane (20 mL) were added N,N,N?25 trimethylethylenediamine (636 jiL, 4.89 mmol), sodium tert-butoxide (1.40 g, 14.7 mmol),tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) (447 mg, 0.49 mmol) and (2- biphenyl)di-tert-butylphosphinetriethylamine (JohnPhos) (37 mg, 1 .47mmol) at RT and the reaction mixture was stirred at 45 C for 4 h. The mixture was cooled to RT and filteredthrough celite. The filtrate was concentrated and the residue was dissolved in ethyl acetate. The organic solution was washed with 0.1 N HC1 followed by water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue obtained was purified by silica gel column chromatography to yield 2.01 g of the desired compound. The compound was as suchcarried forward to the next step without characterization. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
28% | With palladium diacetate; johnphos; sodium t-butanolate; In toluene; at 80℃; for 5h;Inert atmosphere; | Example 105 Production of tert-Butyl N-[(3-thiomorpholinophenyl)methyl]carbamate. Thiomorpholine (9.9 mL, 105 mmol), palladium acetate (0.8 g, 3.5 mmol), 2-(di-tert-butylphosphino)biphenyl (2.1 g, 7.0 mmol), and sodium tert-butoxide (3.7 g, 38 mmol) were added to a toluene (70 mL) solution of the compound obtained in Example 104 (10.0 g, 35 mmol), in an argon atmosphere at room temperature, and the mixture was stirred at 80C for 5 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was filtered away. The residue obtained by distilling off the solvent of the filtrate under a reduced pressure was purified with silica gel column chromatography (n-hexane : ethyl acetate = 5:1), to give the captioned compound (3.1 g, 28%) as a solid. Mp 62-63C. 1H-NMR (DMSO-d6) delta: 1.39 (s, 9H), 2.64-2.66 (m, 4H), 3.48-3.50 (m, 4H), 4.06 (d, J=6.1 Hz, 2H), 6.64 (d, J=7.4 Hz, 1H), 6.77-6.79 (m, 2H), 7.12-7.16 (m, 1H), 7.30 (t, J=5.9 Hz, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
62.8% | With potassium carbonate; In 1,4-dioxane; at 70℃; | Compound 1-3 (3.12 g, 12 mmol) was dissolved in 1,4-dioxane (50 mL), followed by addition of compound 23-1 (1 g, 10 mmol), and under stirring potassium carbonate (1.65 g, 12 mmol) was added, followed by stirring the reaction overnight at 70 C., TLC monitoring showed the starting material 1-3 was completely reacted. The solvent was removed under reduced pressure to obtain a concentrated residue. The concentrated residue was dispensed with dichloromethane (20 mL), an appropriate amount of silica gel was added and the sample was stirred, spin-dried under reduced pressure and directly placed on a silica gel column for column chromatographic purification, with an eluent (dichloromethane:methanol=20/1-5/1) to obtain the target product 23-2 (1.2 g, 62.8%) as a pale yellow oil, LC-MS: m/z=192[M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
To a mixture of <strong>[117324-58-0]methyl 2-amino-5-(trifluoromethyl)benzoate</strong> (512 mg, 2.3 mmol) in dichloromethane (11 mL) of was added chlorosulfonic acid (170 muL, 2.6 mmol) followed by phosphorus pentoxide (535 mg, 2.6 mmol). The mixture was heated at 75 C. block overnight. After cooling, the reaction mixture was added to a solution of triethylamine (0.81 mL, 5.8 mmol) in dichloromethane (5 mL) that was cooled in an ice-water bath. A mixture of N,N-diisopropylethylamine (0.81 mL, 4.7 mmol) and thiomorpholine (244 muL, 2.6 mmol) in dichloromethane (5 mL) was added to the mixture, which was then stirred at 0 C. for 45 minutes. The cooling bath was removed, and the mixture was allowed to warm to room temperature. Ethyl acetate and saturated aqueous sodium chloride solution were added, and the layers were separated. The organic phase was washed once each with water and saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and concentrated to a residue, which was then purified by flash chromatography (silica gel) to provide the desired intermediate. LCMS-ESI- (m/z): [M-H]- calcd 383.04; found 383.18 |