*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
Fmoc-Asn-OH is a protected asparagine derivative with the amino group protected by 9-fluorenylmethoxycarbonyl (Fmoc), suitable for peptide synthesis.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 71989-16-7 |
Formula : | C19H18N2O5 |
M.W : | 354.36 |
SMILES Code : | O=C(O)[C@@H](NC(OCC1C2=C(C3=C1C=CC=C3)C=CC=C2)=O)CC(N)=O |
MDL No. : | MFCD00037132 |
InChI Key : | YUGBZNJSGOBFOV-INIZCTEOSA-N |
Pubchem ID : | 2724774 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P264-P271-P280-P302+P352-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate; N-ethyl-N,N-diisopropylamine; In DMF (N,N-dimethyl-formamide); at 20℃; for 12h;Combinatorial reaction / High throughput screening (HTS); | Split & Mix Procedure for the Resin Bound HexapeptideP-Glu (OAll)-Gly-X1X2X3X4-H sublibrary The resin was suspended in 3:1 mixture of 1,2-dichloroethane (DCE) and DMF and equally partitioned into 17 4 mL Alltech tubes. Each tube thus contained 0.1/17 mmol=5.88 10-6 mol of resin-bound dipeptide. Excess solvent was removed in vacuo, and the resin was suspended in DMF (200 mL) and agitated for 30 minutes. The 17 amino acids (1.76 10-5 mmol, 3 eq for each step, 7.04 10-5 mmol for 4 steps) were weighed into 17 vials: 1. Fmoc-Ala-OH 22 mg 2. Fmoc-Asn-OH 25 mg 3. Fmoc-Asp(OtBu)-OH 29 mg 4. Fmoc-Gln-OH 26 mg 5. <strong>[104091-08-9]Fmoc-Glu(OtBu)-OH</strong> 30 mg 6. Fmoc-Gly-OH 21 mg 7. Fmoc-Ile-OH 25 mg 8. Fmoc-Leu-OH 25 mg 9. Fmoc-Lys(BOC)-OH 33 mg 10. Fmoc-Met-OH 26 mg 11. Fmoc-Phe-OH 27 mg 12. Fmoc-Pro-OH 24 mg 13. Fmoc-Ser(tBu)-OH 27 mg 14. Fmoc-Thr(tBu)-OH 28 mg 15. Fmoc-Trp(BOC)-OH 37 mg 16. Fmoc-Tyr(tBu)-OH 32 mg 17. Fmoc-Val-OH 24 mg Each amino acid was dissolved in DMF (2 mL); an aliquot of each solution (0.5 mL, corresponding to 1.76 10-5 mmol, 3 eq of each amino acid) was added to the appropriate tube. TBTU (1.76 10-5 mmol×17=2.99 10-4, 96 mg) and DIPEA (1.76 10-5 mmol×17=2.99 10-4, 52 mL) were separately dissolved in DMF (1.7 mL) and each solution was evenly distributed, delivering 3 eq of each reagent, to each one of the 17 tubes.The reaction tubes were agitated at room temperature for 12 hours, then the reagents and solvents were removed in vacuo and the resin was rinsed with DMF (2×1 mL each tube), DCM (2×1 mL each tube) and methanol (2×1 mL each tube). The resin was then suspended in 3:1 mixture of 1,2-dichloroethane and DMF and recombined. The recombined resin was acetylated (3 mL of acetylating reagent, 1 hour, room temperature) and deprotected (3 mL of 20% piperidine in DMF, 2 hours, room temperature).The procedure was repeated 3 more times. At the end of the 4th amino acid coupling the deprotection step was not executed. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Solid phase peptide synthesis was performed on a CEM Liberty Peptide Synthesizer using standard Fmoc chemistry. TentaGel S Ram resin (1 g; 0.25 mmol/g) was swelled in NMP (10 ml) prior to use and transferred between tube and reaction vessel using DCM and NMP. Coupling (0148) An Fmoc-amino acid in NMP/DMF/DCM (1:1:1; 0.2 M; 5 ml) was added to the resin in a CEM Discover microwave unit together with HATU/DMF or COMU/DMF (0.5 M; 2 ml) and DIPEA/NMP (2.0 M; 1 ml). The coupling mixture was heated to 75° C. for 5 min while nitrogen was bubbled through the mixture. The resin was then washed with NMP (4×10 ml). Deprotection (0149) Piperidine/DMF (20percent; 10 ml) was added to the resin for initial deprotection and the mixture was heated by microwaves (30 sec; 40° C.). The reaction vessel was drained and a second portion of piperidine/NMP (20percent; 10 ml) was added and heated (75° C.; 3 min.) again. The resin was then washed with DMF (6×10 ml). Side Chain Acylation (0150) Fmoc-Lys(ivDde)-OH or alternatively another amino acid with an orthogonal side chain protective group was introduced at the position of the acylation. The N-terminal of the peptide backbone was then Boc-protected using Boc2O or alternatively by using a Boc-protected amino acid in the last coupling. While the peptide was still attached to the resin, the orthogonal side chain protective group was selectively cleaved using freshly prepared hydrazine hydrate (2-4percent) in NMP for 2×15 min. The unprotected lysine side chain was first coupled with Fmoc-Glu-OtBu or another spacer amino acid, which was deprotected with piperidine and acylated with a lipophilic moiety using the peptide coupling methodology as described above. Alternatively, the acylation moiety was introduced as a premade building block e.g. Fmoc-Lys(hexadecanoyl-gamma-Glu)-OH where gamm-Glu is the coupling of Glutamic acid through the side-chain. Abbreviations employed are as follows: COMU: 1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-morpholinomethylene)]methanaminium hexaflourophosphate ivDde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)3-methyl-butyl Dde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-ethyl DCM: dichloromethane DMF: N,N-dimethylformamide (0151) DIPEA: diisopropylethylamine EtOH: ethanol Et2O: diethyl ether HATU: N-[(dimethylamino)-1H-1,2,3-triazol[4,5-b]pyridine-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide MeCN: acetonitrile NMP: N-methylpyrrolidone (0152) TFA: trifluoroacetic acid TIS: triisopropylsilane Cleavage (0153) The resin was washed with EtOH (3×10 ml) and Et2O (3×10 ml) and dried to constant weight at room temperature (r.t.). The crude peptide was cleaved from the resin by treatment with TFA/TIS/water (95/2.5/2.5; 40 ml, 2 h; r.t.). Most of the TFA was removed at reduced pressure and the crude peptide was precipitated and washed three times with diethylether and dried to constant weight at room temperature. HPLC Purification of the Crude Peptide (0154) The crude peptide was purified to greater than 90percent by preparative reverse phase HPLC using a PerSeptive Biosystems VISION Workstation equipped with a C-18 column (5 cm; 10 mum) and a fraction collector and run at 35 ml/min with a gradient of buffer A (0.1percent TFA, aq.) and buffer B (0.1percent TFA, 90percent MeCN, aq.). Fractions were analyzed by analytical HPLC and MS and relevant fractions were pooled and lyophilized. The final product was characterized by HPLC and MS. (0155) The synthesized compounds are shown in Table 1 and Table 2 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: Sufficient quantity (50-100 mg) of Fmoc-PAL-PEG-PS resin or Fmoc-Rink amide MB HA resin, loading: 0.5-0.6 mmol/g was swelled in DMF (1-10 ml /100 mg of resin) for 2-10 minutes. The Fmoc-group on resin was removed by incubation of resin with 10-30 % piperidine in DMF (10- 30 ml / 100 mg of resin), for 10-30 minutes. Deprotected resin was filtered and washed excess of DMF, DCM and ether (50 ml X 4). Washed resin was incubated in freshly distilled DMF (1 ml / 100 mg of resin), under nitrogen atmosphere for 5 minutes. A 0.5 M solution of first Fmoc- protected amino acid (1-3 eq.), pre-activated with HOBt (1-3 eq.) and DIPCDI (1-2 eq.) in DMF was added to the resin, and the resin was then shaken for 1-3 hrs, under nitrogen atmosphere. Coupling completion was monitored using a qualitative ninhydrin test. After the coupling of first amino acid, the resin was washed with DMF, DCM and Diethyl ether (50 ml X 4). For the coupling of next amino acid, firstly, the Fmoc-protection on first amino acid, coupled with resin was deprotected, using a 10-20% piperidine solution, followed by the coupling the Fmoc- protected second amino acid, using a suitable coupling agents, and as described above. The repeated cycles of deprotection, washing, coupling and washing were performed until the desired peptide chain was assembled on resin, as per general (Scheme 1) above. Finally, the Fmoc- protected peptidyl-resin prepared above was deprotected by 20% piperidine treatment as described above and the peptidyl-resins were washed with DMF, DCM and Diethyl ether. Resin containing desired peptide was dried under nitrogen pressure for 10-15 minutes and subjected for cleavage/ deprotection. Using above protocol and suitable variations thereof which are within the scope of a person skilled in the art, the short chain peptides designed in the present invention were prepared, using Fmoc-SPPS approach. Furthermore, resin bound short chain peptides were cleaved and deprotected, purified and characterized using following protocol. CLEAVAGE AND DEPROTECTION: The desired short chain peptides were cleaved and deprotected from their respective peptidyl- resins by treatment with TFA cleavage mixture as follows. A solution of TFA / Water / Triisopropylsilane (95: 2.5: 2.5) (10 ml / 100 mg of peptidyl-resin) was added to peptidyl-resins and the mixture was kept at room temperature with occasional starring. The resin was filtered, washed with a cleavage mixture and the combined filtrate was evaporated to dryness. Residue obtained was dissolved in 10 ml of water and the aqueous layer was extracted 3 times with ether and finally the aqueous layer was freeze-dried. Crude peptide obtained after freeze-drying was purified by preparative HPLC as follows: PREPARATIVE HPLC PURIFICATION OF THE CRUDE SHORT CHAIN PEPTIDES: Preparative HPLC was carried out on a Shimadzu LC-8A liquid chromatography. A solution of crude peptide dissolved in DMF or water was injected into a semi-Prep column (Luna 10mu; C18; 100 A0), dimension 250 X 50 mm and eluted with a linear gradient of ACN in water, both buffered with 0.1 % TFA, using a flow rate of 15 -50 ml / min, with effluent monitoring by PDA detector at 220 nm. A typical gradient of 20 % to 70 % of water- ACN mixture, buffered with 0.1 % TFA was used, over a period of 50 minutes, with 1% gradient change per minute. The desired product eluted were collected in a single 10-20 ml fraction and pure short chain peptides were obtained as amorphous white powders by lyophilisation of respective HPLC fractions. HPLC ANALYSIS OF THE PURIFIED SHORT-CHAIN PEPTIDES After purification by preparative HPLC as described above, each peptide was analyzed by analytical RP-HPLC on a Shimadzu LC-10AD analytical HPLC system. For analytical HPLC analysis of short chain peptides, Luna 5mu; C18; 100 A , dimension 250 X 4.6 mm column was used, with a linear gradient of 0.1 % TFA and ACN buffer and the acquisition of chromatogram was carried out at 220 nm, using a PDA detector. CHARACTERIZATION BY MASS SPECTROMETRY Each peptide was characterized by electrospray ionisation mass spectrometry (ESI-MS), either in flow injection or LC/MS mode. Triple quadrupole mass spectrometers (API-3000 (MDS-SCIES, Canada) was used in all analyses in positive and negative ion electrospray mode. Full scan data was acquired over the mass range of quadrupole, operated at unit resolution. In all cases, the experimentally measured molecular weight was within 0.5 Daltons of the calculated monoisotopic molecular weight. Quantification of the mass chromatogram was done using Analyst 1.4.1 software. Following table l(i) is the list of short chain peptides synthesized using the SPPS approach as described above. Mentioned Seq. ID. No 1 in the list was taken as a reference from WO 2011027257. |