Structure of Pyrrole-2-carboxaldehyde
CAS No.: 1003-29-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
| Size | Price | VIP Price |
DE Stock US Stock |
Asia Stock Global Stock |
In Stock |
| {[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock Inquiry - | Login - + |
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Berg, Kaja ; Hegde, Pooja ; Pujari, Venugopal ; Brinkmann, Marzena ; Wilkins, David Z. ; Parish, Tanya , et al.
Abstract: The electron transport chain (ETC) in the cell membrane consists of a series of redox complexes that transfer electrons from electron donors to acceptors and couples this electron transfer with the transfer of protons (H+) across a membrane. This process generates proton motive force which is used to produce ATP and a myriad of other functions and is essential for the long-term survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis (TB), under the hypoxic conditions present within infected granulomas. Menaquinone (MK), an important carrier molecule within the mycobacterial ETC, is synthesized de novo by a cluster of enzymes known as the classic/canonical MK biosynthetic pathway. MenA (1,4-dihydroxy-2-naphthoate prenyltransferase), the antepenultimate enzyme in this pathway, is a verified target for TB therapy. In this study, we explored structure-activity relationships of a previously discovered MenA inhibitor scaffold, seeking to improve potency and drug disposition properties. Focusing our campaign upon three molecular regions, we identified two novel inhibitors with potent activity against MenA and Mtb (IC50 = 13-22 μM, GIC50 = 8-10 μM). These analogs also displayed substantially improved pharmacokinetic parameters and potent synergy with other ETC-targeting agents, achieving nearly complete sterilization of Mtb in combination therapy within two weeks in vivo. These new inhibitors of MK biosynthesis present a promising new strategy to curb the continued spread of TB.
Show More >
Keywords: 1,4-dihydroxy-2-naphthoate prenyltransferase ; MenA ; MenA inhibitors ; Menaquinone ; Mtb ; Mycobacterium tuberculosis ; Piperidine derivatives ; SAR
Show More >
Purchased from AmBeed: 25952-53-8 ; 90719-32-7 ; 872-85-5 ; 6457-49-4 ; 3769-41-3 ; 10338-57-5 ; 135-19-3 ; 135-19-3 ; 28177-48-2 ; 22246-18-0 ; 122334-37-6 ; 91914-06-6 ; 10040-98-9 ; 161975-39-9 ; 150-76-5 ; 371-41-5 ; 63754-96-1 ; 288-32-4 ; 3380-34-5 ; 1677-46-9 ; 166815-96-9 ; 700-57-2 ; 1204-86-0 ; 21725-69-9 ; 367-12-4 ; 1003-29-8 ; 627-35-0 ; 27292-49-5 ; 104324-16-5 ; 123855-51-6 ; 180847-23-8 ; 4328-13-6 ; 875401-70-0 ; 405272-71-1 ; 63614-86-8 ; 1420942-13-7 ; 25952-53-8 ; 1420895-21-1 ; 1078-18-8 ; 32363-45-4 ; 69564-68-7 ; 31519-22-9 ; 22246-18-0 ; 189618-33-5 ; 180847-24-9 ; 6264-98-8 ; 946680-75-7 ; 63608-38-8 ; 713-68-8 ; 62810-39-3 ; 189618-32-4 ; 63608-31-1 ; 15789-05-6 ; 63712-27-6 ; 63608-33-3 ; 63608-35-5
Show More >
| CAS No. : | 1003-29-8 |
| Formula : | C5H5NO |
| M.W : | 95.10 |
| SMILES Code : | O=CC1=CC=CN1 |
| MDL No. : | MFCD00005217 |
| InChI Key : | ZSKGQVFRTSEPJT-UHFFFAOYSA-N |
| Pubchem ID : | 13854 |
| GHS Pictogram: |
|
| Signal Word: | Warning |
| Hazard Statements: | H315-H319-H335 |
| Precautionary Statements: | P261-P305+P351+P338 |
| Num. heavy atoms | 7 |
| Num. arom. heavy atoms | 5 |
| Fraction Csp3 | 0.0 |
| Num. rotatable bonds | 1 |
| Num. H-bond acceptors | 1.0 |
| Num. H-bond donors | 1.0 |
| Molar Refractivity | 26.18 |
| TPSA ? Topological Polar Surface Area: Calculated from |
32.86 Ų |
| Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.96 |
| Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.51 |
| Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.83 |
| Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.56 |
| Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.61 |
| Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.67 |
| Log S (ESOL):? ESOL: Topological method implemented from |
-1.21 |
| Solubility | 5.82 mg/ml ; 0.0612 mol/l |
| Class? Solubility class: Log S scale |
Very soluble |
| Log S (Ali)? Ali: Topological method implemented from |
-0.77 |
| Solubility | 16.1 mg/ml ; 0.17 mol/l |
| Class? Solubility class: Log S scale |
Very soluble |
| Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.47 |
| Solubility | 3.24 mg/ml ; 0.034 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
| BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
| P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
| CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
| CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
| CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
| CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
| CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
| Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.52 cm/s |
| Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
| Ghose? Ghose filter: implemented from |
None |
| Veber? Veber (GSK) filter: implemented from |
0.0 |
| Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
| Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
| Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
| PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
| Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
| Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
| Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.0 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 96% | With piperidine; In isopropyl alcohol; at 85℃; for 2h; | A mixture of <strong>[99365-48-7]4-bromo-1,3-dihydro-2H-indol-2-one</strong> (0.2 g, 0.94 mmol) (see T. Kosuge et. al., Chem. Pharm. Bull. 33(4):1414-1418 (1985)), and excess pyrrole-2-carboxaldehyde (0.11 g, 1.13 mmol) (Aldrich) in 1% piperidine in 2-propanol (2 mL) was heated at 85 C for 2 h. Hot water (2 mL) was added. On cooling, the crystallized product was filtered off, washed with aqueous 2-propanol and dried. (Yield 0.26 g, 96%) |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 2%; 15% | Sodium methoxide (0.65 g, 0.012 mol) was added in one portion to a mixture of 2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one (1.50 g, 0.01 mol) and pyrrole-2-carboxaldehyde (1.58 g, 0.016 mol) in dry DMF (10 ml). The reaction mixture was refluxed for 48 h, then cooled to room temperature, poured into crushed ice and left overnight at 4 C. The precipitated solid was filtered off, washed with water and dried. The dark solid was boiled with ethanol (150 ml) and filtered hot to remove impurities. The filtrate was evaporated to dryness under reduced pressure, and the residue was purified by silica gel chromatographed using (95:5) toluene:ethyl acetate as the mobile phase. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 34% | With potassium carbonate; In N,N-dimethyl-formamide; at 100℃; for 20h; | General procedure: A flask was charged with 2-formylpyrrole 1 (5.00 g, 52.6 mmol), K2CO3 (8.72 g, 63.1 mmol), 2-fluoropyridine 2 (9.0 mL, 105.2 mmol) and DMF (26 mL).The mixture was heated at 100 °C for 20 h and then cooled to rt. The reaction mixturewas diluted with water, extracted with MTBE, and the organic phase was dried (MgSO4), filtered, and concentrated. The crude product was purified by chromatography on SiO2(hexanes/EtOAc, 95:5 to 85:15 v/v) to give the product 3 (5.71 g, 63percent) as a tan solid. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 98% | With tetrabutylammomium bromide; sodium hydroxide; In dichloromethane; water; at 0 - 20℃; | To a stirred mixture of 1H-pyrrole-2-carbaldehyde 39 (200 mg, 2.10 mmol), TBAB (68 mg, 0.21 mmol) and <strong>[14704-31-5]3-(bromomethyl)-1,1'-biphenyl</strong> 38 (624 mg, 2.52 mmol ) in DCM was added aqueous NaOH solution (1.2 mL, 1.25 M in H2O) dropwise over a period of 30 min at 0 C. Then the mixture was allowed to warm to room temperature. After stirring overnight, the mixture was diluted with water, and extracted with DCM (3 x 30 mL). The combined organic phases were washed with 2 M HCl, saturated NaHCO3 and brine, dried with Na2SO4, filtered, concentrated and purified by silica gel chromatography to afford 43 (540 mg, 98%) as a white solid. |
[ 1003-29-8 ]
[ 78364-55-3 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 79% | With acetic acid; In ethanol; at 80℃; for 0.166667h;Microwave irradiation; | General procedure: 2-(2-Arylidenehydrazino)-6-fluorobenzothiazoles 6a-r. General Procedure D. A mixture of compound 2 (0.0549 g, 0.0003 mol), the appropriate aromatic aldehyde (0.00033 mol) and glacial acetic acid (0.1 mL) in ethanol (5 mL) was heated under microwave (20 W) at 80 °C for 10 min. On cooling, the precipitated solid was collected by filtration, washed with water, dried and crystallized from the appropriate solvent to give the desired compounds 6a-r. |
[ 1003-29-8 ]
[ 53137-27-2 ]
[ 931-53-3 ]
[ 106-49-0 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 35% | General procedure: The aldehyde (0.8 equivalent) and amine (0.7 equivalent) were dissolved in methanol (2.0 mL) and stirred for two to 3 h depending upon the starting material. The acid (100 mg, 1 equivalent) and isocyanide (0.7 equivalent) were added in the reaction mixture and further stirred. The reaction mixture was monitored using TLC analysis.Water (4 mL) was added upon completion of the reaction.The resulted solid was filtered off and dissolved in ethyl acetate(10 mL), washed with water (2 3 mL) and dried over sodium sulphate. The crude product was purified using silica gel column chromatography. The ethyl acetate:hexane (6:4) solvent system was used for the purification of these compounds. |

A608700 [1192-79-6]
5-Methylpyrrole-2-carbaldehyde
Similarity: 0.96

A351000 [1192-58-1]
1-Methylpyrrole-2-carboxaldehyde
Similarity: 0.90

A175925 [67350-50-9]
5-(Hydroxymethyl)-1H-pyrrole-2-carbaldehyde
Similarity: 0.77

A377252 [2199-58-8]
3,5-Dimethyl-1H-pyrrole-2-carbaldehyde
Similarity: 0.75

A323627 [931-33-9]
4-Bromo-1H-pyrrole-2-carbaldehyde
Similarity: 0.71

A608700 [1192-79-6]
5-Methylpyrrole-2-carbaldehyde
Similarity: 0.96

A351000 [1192-58-1]
1-Methylpyrrole-2-carboxaldehyde
Similarity: 0.90

A175925 [67350-50-9]
5-(Hydroxymethyl)-1H-pyrrole-2-carbaldehyde
Similarity: 0.77